論文の概要: From Sound to Setting: AI-Based Equalizer Parameter Prediction for Piano Tone Replication
- arxiv url: http://arxiv.org/abs/2509.24404v1
- Date: Mon, 29 Sep 2025 07:50:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.831337
- Title: From Sound to Setting: AI-Based Equalizer Parameter Prediction for Piano Tone Replication
- Title(参考訳): 音から設定へ:ピアノ音の再現のためのAIに基づく等化器パラメータ予測
- Authors: Song-Ze Yu,
- Abstract要約: 本研究は,音声機能から直接EQパラメータ設定を予測することに焦点を当てた,音楽制作におけるトーン再現のためのAIベースのシステムを提案する。
従来のオーディオ・オーディオ法とは異なり、我々の手法は、ミュージシャンがワークフローでさらに調整できる解釈可能なパラメータ値を出力する。
このシステムは、音楽プロデューサーのための実用的で柔軟で自動化されたトーンマッチングを可能にし、より複雑なオーディオ効果への拡張の基礎を築き上げている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This project presents an AI-based system for tone replication in music production, focusing on predicting EQ parameter settings directly from audio features. Unlike traditional audio-to-audio methods, our approach outputs interpretable parameter values (e.g., EQ band gains) that musicians can further adjust in their workflow. Using a dataset of piano recordings with systematically varied EQ settings, we evaluate both regression and neural network models. The neural network achieves a mean squared error of 0.0216 on multi-band tasks. The system enables practical, flexible, and automated tone matching for music producers and lays the foundation for extensions to more complex audio effects.
- Abstract(参考訳): 本研究は,音声機能から直接EQパラメータ設定を予測することに焦点を当てた,音楽制作におけるトーン再現のためのAIベースのシステムを提案する。
従来のオーディオ・オーディオ法とは異なり、我々の手法は、ミュージシャンがワークフローでさらに調整できる解釈可能なパラメータ値(例えば、EQバンドゲイン)を出力する。
系統的に変化するEQ設定を持つピアノ録音のデータセットを用いて,回帰モデルとニューラルネットワークモデルの両方を評価する。
ニューラルネットワークは、マルチバンドタスクにおける平均二乗誤差0.0216を達成する。
このシステムは、音楽プロデューサーのための実用的で柔軟で自動化されたトーンマッチングを可能にし、より複雑なオーディオ効果への拡張の基礎を築き上げている。
関連論文リスト
- Enhancing the vocal range of single-speaker singing voice synthesis with
melody-unsupervised pre-training [82.94349771571642]
本研究では, メロディ非教師型マルチスピーカ事前学習法を提案し, シングルスピーカの発声域を拡大する。
合成音声のリズム自然性を改善するために、識別可能な持続時間調整器を導入するのは、これが初めてである。
実験により,提案したSVSシステムは,音質と自然性の両方において,ベースラインよりも優れていることを確認した。
論文 参考訳(メタデータ) (2023-09-01T06:40:41Z) - Synthesizer Preset Interpolation using Transformer Auto-Encoders [4.213427823201119]
本稿では,マルチヘッドアテンションブロックを用いてプリセットを同時に処理するバイモーダルオートエンコーダニューラルネットワークと,畳み込みを用いたオーディオを導入する。
このモデルは、100以上のパラメータを持つ一般的な周波数変調シンセサイザーでテストされている。
トレーニング後、提案したモデルは、ライブまたはサウンドデザインタスクのための商用シンセサイザーに統合することができる。
論文 参考訳(メタデータ) (2022-10-27T15:20:18Z) - High Fidelity Neural Audio Compression [92.4812002532009]
我々は、ニューラルネットワークを利用した最先端のリアルタイム、高忠実、オーディオを導入する。
ストリーミングエンコーダ-デコーダアーキテクチャと、エンドツーエンドでトレーニングされた量子化潜在空間で構成されている。
単一マルチスケール・スペクトログラム・アドバイザリーを用いて、トレーニングを簡素化し、高速化する。
論文 参考訳(メタデータ) (2022-10-24T17:52:02Z) - Fully Automated End-to-End Fake Audio Detection [57.78459588263812]
本稿では,完全自動エンドツーエンド音声検出手法を提案する。
まず、wav2vec事前学習モデルを用いて、音声の高レベル表現を得る。
ネットワーク構造には, Light-DARTS という異種アーキテクチャサーチ (DARTS) の修正版を用いる。
論文 参考訳(メタデータ) (2022-08-20T06:46:55Z) - Deep Performer: Score-to-Audio Music Performance Synthesis [30.95307878579825]
Deep Performer(ディープ・パーフォーマー)は、音楽の楽譜合成のための新しいシステムである。
音声とは異なり、音楽はポリフォニーや長い音符を含むことが多い。
提案モデルでは, 鮮明なポリフォニーとハーモニック構造で楽曲を合成できることが示されている。
論文 参考訳(メタデータ) (2022-02-12T10:36:52Z) - Rapping-Singing Voice Synthesis based on Phoneme-level Prosody Control [47.33830090185952]
任意の話者の声に適応できるテキスト・トゥ・ラッピング・歌唱システムを導入する。
読み上げ専用音声データに基づいて訓練されたタコトロンベースのマルチスピーカ音響モデルを利用する。
その結果,提案手法は自然性を高めた高品質なラッピング/歌唱音声を生成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-17T14:31:55Z) - DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis [53.19363127760314]
DiffSingerは、音楽スコアで調整されたメログラムにノイズを反復的に変換するパラメータ化されたマルコフチェーンです。
中国の歌唱データセットで行った評価は、DiffSingerが最先端のSVSワークを顕著な差で上回っていることを示している。
論文 参考訳(メタデータ) (2021-05-06T05:21:42Z) - Generative Modelling for Controllable Audio Synthesis of Expressive
Piano Performance [6.531546527140474]
ガウス混合変分オートエンコーダ(GM-VAE)に基づく可制御型ニューラルオーディオシンセサイザー
そこで本研究では,モデルが音声に対してきめ細かな形態変化を適用可能であることを実証する。
論文 参考訳(メタデータ) (2020-06-16T12:54:41Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
本稿では,条件付き変分オートエンコーダ(CVAE)を用いた変分パラメトリックシンセサイザVaPar Synthを提案する。
提案するモデルの性能は,ピッチを柔軟に制御した楽器音の再構成と生成によって実証する。
論文 参考訳(メタデータ) (2020-03-30T16:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。