論文の概要: Enabling Physical AI through Biological Principles
- arxiv url: http://arxiv.org/abs/2509.24521v1
- Date: Mon, 29 Sep 2025 09:38:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.902064
- Title: Enabling Physical AI through Biological Principles
- Title(参考訳): 生物学的原理による物理AIの実現
- Authors: Wilkie Olin-Ammentorp,
- Abstract要約: 人工システムの能力を多様化するためには、さらなる生物学的インスピレーションが必要であると我々は主張する。
我々は、AIハードウェアとソフトウェアを活用できるNIにインスパイアされたメカニズムの分野を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The introduction of large language models has significantly expanded global demand for computing; addressing this growing demand requires novel approaches that introduce new capabilities while addressing extant needs. Although inspiration from biological systems served as the foundation on which modern artificial intelligence (AI) was developed, many modern advances have been made without clear parallels to biological computing. As a result, the ability of techniques inspired by "natural intelligence" (NI) to inflect modern AI systems may be questioned. However, by analyzing remaining disparities between AI and NI, we argue that further biological inspiration is indeed necessary to diversify the capabilities of artificial systems and enable them to succeed in real-world environments and adapt to niche applications. To elucidate which NI mechanisms can contribute toward this goal, we review and compare elements of biological and artificial computing systems, emphasizing areas of NI that have not yet been effectively captured by AI. We then suggest areas of opportunity for NI-inspired mechanisms that can inflect AI hardware and software.
- Abstract(参考訳): 大規模言語モデルの導入は、コンピューティングに対する世界的な需要を大きく拡大し、この需要の増大に対処するには、既存のニーズに対処しながら新しい機能を導入する新しいアプローチが必要である。
生物学的システムからのインスピレーションは、現代の人工知能(AI)が開発された基盤となったが、多くの近代的な進歩は、生物学的コンピューティングと明確な並行性なしになされてきた。
その結果, 「自然知性」 (NI) にインスパイアされた技術が, 現代のAIシステムに影響を及ぼす可能性に疑問が呈される。
しかし、AIとNIの相違を分析することによって、人工システムの能力を多様化し、現実の環境で成功し、ニッチなアプリケーションに適応するためには、さらなる生物学的インスピレーションが必要であると論じる。
この目標に向けてどのNIメカニズムが寄与するかを明らかにするため、我々は、AIによって効果的に捉えられていないNIの領域を強調し、生物学的および人工知能システムの要素をレビューし、比較する。
そして、AIハードウェアとソフトウェアを注入できるNIにインスパイアされたメカニズムの分野を提案する。
関連論文リスト
- Embodied AI: From LLMs to World Models [65.68972714346909]
人工知能(AI)は、人工知能(AGI)を実現するためのインテリジェントシステムパラダイムである。
近年のLarge Language Models(LLMs)とWorld Models(WMs)のブレークスルーは、AIを具現化する上で大きな注目を集めている。
論文 参考訳(メタデータ) (2025-09-24T11:37:48Z) - AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research [58.944125758758936]
科学科学(Science of Science, SoS)は、科学的発見の基礎となるメカニズムを探求する。
人工知能(AI)の出現は、次世代のSoSに変革の機会をもたらす。
我々は、従来の手法よりもAIの利点を概説し、潜在的な制限について議論し、それらを克服するための経路を提案する。
論文 参考訳(メタデータ) (2025-05-17T15:01:33Z) - Multi-agent Embodied AI: Advances and Future Directions [46.23631919950584]
エンボディード人工知能(Embodied AI)は、インテリジェントな時代における先進技術の適用において重要な役割を担っている。
本稿では,研究の現状を概観し,重要な貢献を分析し,課題と今後の方向性を明らかにする。
論文 参考訳(メタデータ) (2025-05-08T10:13:53Z) - Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence [0.0]
人工知能を作ることの追求は、私たち自身の知性を理解することへの長年の関心を反映している。
最近のAIの進歩は約束を守るが、特異なアプローチはしばしば知性の本質を捉えるのに不足する。
本稿では,生物計算の基本原理が真にインテリジェントなシステムの設計をいかに導くかを検討する。
論文 参考訳(メタデータ) (2024-11-22T02:55:39Z) - Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack [7.253801704452419]
スパイキングニューラルネットワーク(SNN)によるニューロモルフィックコンピューティングの最近の進歩は、ロボット工学の具体的インテリジェンスを可能にする可能性を実証している。
本稿では, ロボットシステムにおいて, エンボディ型ニューロモーフィックAIを実現する方法について考察する。
論文 参考訳(メタデータ) (2024-04-04T09:52:22Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Challenges and Opportunities of Edge AI for Next-Generation Implantable
BMIs [6.385006149689549]
次世代脳-機械インタフェース(BMI)におけるオンチップAIの新たな可能性について概観する。
我々は,新しい世代のAI強化BMIと高チャネル数BMIを実現するために,アルゴリズムおよびIC設計ソリューションを提案する。
論文 参考訳(メタデータ) (2022-04-04T12:47:07Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。