論文の概要: Stabilizing Humanoid Robot Trajectory Generation via Physics-Informed Learning and Control-Informed Steering
- arxiv url: http://arxiv.org/abs/2509.24697v1
- Date: Mon, 29 Sep 2025 12:31:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.974307
- Title: Stabilizing Humanoid Robot Trajectory Generation via Physics-Informed Learning and Control-Informed Steering
- Title(参考訳): 物理インフォームドラーニングと制御インフォームドステアリングによるヒューマノイドロボット軌道生成
- Authors: Evelyn D'Elia, Paolo Maria Viceconte, Lorenzo Rapetti, Diego Ferigo, Giulio Romualdi, Giuseppe L'Erario, Raffaello Camoriano, Daniele Pucci,
- Abstract要約: 近年のヒューマノイドロボット制御は、人間のデータからスムーズな人間のような軌道の学習を可能にするために模倣学習に成功している。
本稿では,システムの物理と基本的な制御原理を活かした2段階の学習戦略を提案する。
本研究では, エルゴキューブ型ヒューマノイドロボットの移動挙動を解析し, 物理インフォームド・ロスが接触足の速度をゼロにする手法について検証した。
- 参考スコア(独自算出の注目度): 10.372548166988127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent trends in humanoid robot control have successfully employed imitation learning to enable the learned generation of smooth, human-like trajectories from human data. While these approaches make more realistic motions possible, they are limited by the amount of available motion data, and do not incorporate prior knowledge about the physical laws governing the system and its interactions with the environment. Thus they may violate such laws, leading to divergent trajectories and sliding contacts which limit real-world stability. We address such limitations via a two-pronged learning strategy which leverages the known physics of the system and fundamental control principles. First, we encode physics priors during supervised imitation learning to promote trajectory feasibility. Second, we minimize drift at inference time by applying a proportional-integral controller directly to the generated output state. We validate our method on various locomotion behaviors for the ergoCub humanoid robot, where a physics-informed loss encourages zero contact foot velocity. Our experiments demonstrate that the proposed approach is compatible with multiple controllers on a real robot and significantly improves the accuracy and physical constraint conformity of generated trajectories.
- Abstract(参考訳): 近年のヒューマノイドロボット制御は、人間のデータからスムーズな人間のような軌道の学習を可能にするために模倣学習をうまく採用している。
これらのアプローチはより現実的な動きを可能にするが、利用可能な動きデータ量によって制限されており、システムと環境との相互作用を管理する物理法則に関する事前知識は組み込まれていない。
したがって、それらはそのような法則に反し、現実世界の安定性を制限する散逸した軌道や接触に繋がる可能性がある。
システムの物理と基本的な制御原理を生かした2段階の学習戦略により,このような制約に対処する。
まず,教師付き模倣学習における物理の先行を符号化し,軌道実現可能性を高める。
第二に、出力状態に直接比例積分制御器を適用することにより、推定時のドリフトを最小化する。
本研究では, エルゴキューブ型ヒューマノイドロボットの移動挙動を解析し, 物理インフォームド・ロスが接触足の速度をゼロにする手法について検証した。
実験により,提案手法は実ロボットの複数のコントローラと互換性があり,生成した軌道の精度と物理的制約の整合性を大幅に向上することが示された。
関連論文リスト
- KungfuBot: Physics-Based Humanoid Whole-Body Control for Learning Highly-Dynamic Skills [50.34487144149439]
そこで本研究では,Kungfuやダンスなどの人体動作を高度に制御することを目的とした,物理学に基づくヒューマノイド制御フレームワークを提案する。
動作処理では,運動の抽出,フィルタリング,修正,再ターゲティングを行うパイプラインを設計し,物理的制約の遵守を確実にする。
動作模倣では、二段階最適化問題を定式化し、追従精度の許容度を動的に調整する。
実験では,高ダイナミックな動作のセットを模倣するために全身制御ポリシーを訓練する。
論文 参考訳(メタデータ) (2025-06-15T13:58:53Z) - Embodied Neuromorphic Control Applied on a 7-DOF Robotic Manipulator [10.642836177302533]
逆ダイナミクスは、ロボットシステムの関節空間からトルク空間にマップする基本的なロボット工学の問題である。
スパイキングニューラルネットワークを用いて、動作データの連続性を利用して制御精度を改善し、チューニングパラメータを除去する。
この研究は、概念実証から複雑な実世界のタスクへの応用への一歩前進によって、具体化されたニューロモルフィック制御を推し進める。
論文 参考訳(メタデータ) (2025-04-17T07:13:37Z) - Humanoid Whole-Body Locomotion on Narrow Terrain via Dynamic Balance and Reinforcement Learning [54.26816599309778]
動的バランスと強化学習(RL)に基づく新しい全身移動アルゴリズムを提案する。
具体的には,ZMP(Zero-Moment Point)駆動の報酬とタスク駆動の報酬を,全身のアクター批判的枠組みで拡張した尺度を活用することで,動的バランス機構を導入する。
フルサイズのUnitree H1-2ロボットによる実験により、非常に狭い地形でのバランスを維持するための手法の有効性が検証された。
論文 参考訳(メタデータ) (2025-02-24T14:53:45Z) - Learning Humanoid Standing-up Control across Diverse Postures [27.79222176982376]
立ち上がり制御はヒューマノイドロボットにとって不可欠であり、現在の移動と移動操作システムに統合される可能性がある。
本稿では,立ち上がり制御をゼロから学習する強化学習フレームワークであるHoST(Humanoid Standing-up Control)を提案する。
実験結果から, 各種実験室および屋外環境におけるスムーズ, 安定, 頑健な立位運動が得られた。
論文 参考訳(メタデータ) (2025-02-12T13:10:09Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
実世界におけるヒューマノイド移動に対する完全学習型アプローチを提案する。
コントローラーは様々な屋外の地形の上を歩けるし、外乱に対して頑丈で、状況に応じて適応できる。
論文 参考訳(メタデータ) (2023-03-06T18:59:09Z) - Agile Maneuvers in Legged Robots: a Predictive Control Approach [20.55884151818753]
そこで本研究では,ロボットがアジャイルなロコモーションスキルを計画し,実行できるようにする,接触位相予測および状態フィードバックコントローラを提案する。
私たちの研究は、予測制御がアクティベーション制限を処理し、アジャイルなロコモーション操作を生成し、別のボディコントローラを使わずに、ハードウェア上でローカルに最適なフィードバックポリシーを実行することができることを示す最初のものです。
論文 参考訳(メタデータ) (2022-03-14T23:32:17Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
足の移動はロボティクスの操作領域を劇的に拡張することができる。
足の移動のための従来のコントローラーは、運動プリミティブと反射の実行を明示的にトリガーする精巧な状態マシンに基づいている。
ここでは、自然環境に挑戦する際の足の移動に対して、徹底的に頑健な制御器を提案する。
論文 参考訳(メタデータ) (2020-10-21T19:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。