論文の概要: Surjective Independence of Causal Influences for Local Bayesian Network Structures
- arxiv url: http://arxiv.org/abs/2509.24759v1
- Date: Mon, 29 Sep 2025 13:23:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:20.001653
- Title: Surjective Independence of Causal Influences for Local Bayesian Network Structures
- Title(参考訳): 局所ベイズネットワーク構造に対する因果影響の主観的独立性
- Authors: Kieran Drury, Martine J. Barons, Jim Q. Smith,
- Abstract要約: 多くのドメインでは、利用可能なデータを専門家の判断で補うことが不可欠であることが多い。
ICI仮定を緩和する因果的影響(SICI)モデルの導入について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The very expressiveness of Bayesian networks can introduce fresh challenges due to the large number of relationships they often model. In many domains, it is thus often essential to supplement any available data with elicited expert judgements. This in turn leads to two key challenges: the cognitive burden of these judgements is often very high, and there are a very large number of judgements required to obtain a full probability model. We can mitigate both issues by introducing assumptions such as independence of causal influences (ICI) on the local structures throughout the network, restricting the parameter space of the model. However, the assumption of ICI is often unjustified and overly strong. In this paper, we introduce the surjective independence of causal influences (SICI) model which relaxes the ICI assumption and provides a more viable, practical alternative local structure model that facilitates efficient Bayesian network parameterisation.
- Abstract(参考訳): ベイズ的ネットワークの非常に表現力は、しばしばモデル化される多数の関係のために、新たな課題をもたらす可能性がある。
したがって、多くのドメインでは、利用可能なデータを専門家の判断で補うことが不可欠であることが多い。
これらの判断の認知的負担は、しばしば非常に高く、完全な確率モデルを得るためには、非常に多くの判断が必要である。
ネットワーク全体の局所構造に因果影響の独立性(ICI)などの仮定を導入し,モデルのパラメータ空間を制限することにより,両問題を緩和することができる。
しかし、ICIの仮定はしばしば不当で過度に強い。
本稿では、ICI仮定を緩和し、ベイズネットワークの効率的なパラメータ化を容易にする、より実用的な代替的な局所構造モデルを提供する、因果影響の帰納的独立(SICI)モデルを提案する。
関連論文リスト
- Intervention and Conditioning in Causal Bayesian Networks [23.225006087292765]
単純だが現実的な独立を仮定することで、介入公式の確率を推定できることを示す。
多くの場合、仮定が適切であれば、これらの確率推定は観測データを用いて評価することができる。
論文 参考訳(メタデータ) (2024-05-23T15:55:38Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Causal Triplet: An Open Challenge for Intervention-centric Causal
Representation Learning [98.78136504619539]
Causal Tripletは、視覚的に複雑なシーンを特徴とする因果表現学習ベンチマークである。
この結果から,不整合表現やオブジェクト中心表現の知識によって構築されたモデルが,分散表現よりもはるかに優れていることを示す。
論文 参考訳(メタデータ) (2023-01-12T17:43:38Z) - On the causality-preservation capabilities of generative modelling [0.0]
GANの因果保存能力と生成した合成データが因果質問に確実に答えられるかどうかを検討する。
これは、GANによって生成される合成データの因果解析を、より寛大な仮定で行うことによって行われる。
論文 参考訳(メタデータ) (2023-01-03T14:09:15Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
フェアネスとロバストネスの間に二分法が存在することを示し、フェアネスを達成するとモデルロバストネスを減少させる。
非線形モデルと異なるアーキテクチャの実験は、複数の視覚領域における理論的発見を検証する。
フェアネスとロバストネスの良好なトレードオフを達成するためのモデルを構築するための,シンプルで効果的なソリューションを提案する。
論文 参考訳(メタデータ) (2022-11-21T19:55:35Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - GANs with Conditional Independence Graphs: On Subadditivity of
Probability Divergences [70.30467057209405]
GAN(Generative Adversarial Networks)は、データセットの基盤となる分布を学習するための現代的な手法である。
GANは、基礎となるディストリビューションに関する追加情報がないモデルフリーで設計されている。
本稿では,ベイズネット/MRFの近傍に単純な識別器群を用いたモデルベースGANの設計を提案する。
論文 参考訳(メタデータ) (2020-03-02T04:31:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。