論文の概要: Intra-request branch orchestration for efficient LLM reasoning
- arxiv url: http://arxiv.org/abs/2509.24957v1
- Date: Mon, 29 Sep 2025 15:52:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:20.105232
- Title: Intra-request branch orchestration for efficient LLM reasoning
- Title(参考訳): 効率的なLCM推論のための要求内分岐オーケストレーション
- Authors: Weifan Jiang, Rana Shahout, Yilun Du, Michael Mitzenmacher, Minlan Yu,
- Abstract要約: 大規模言語モデル(LLM)は、複雑なタスクの正確性を改善するために、推論時推論アルゴリズムにますます依存している。
それまでの作業は、トークンの使用を減らすことを中心に、多くの場合、正確さを犠牲にしつつ、他のレイテンシ要因を見越すことに重点を置いていた。
本稿では,LLMサービスシステムであるDUCHESSについて,予測によって導かれるリクエスト内ブランチオーケストレーションにより,精度を犠牲にすることなく,コストとレイテンシを低減できるシステムを提案する。
- 参考スコア(独自算出の注目度): 52.68946975865865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) increasingly rely on inference-time reasoning algorithms such as chain-of-thought and multi-branch reasoning to improve accuracy on complex tasks. These methods, however, substantially increase token usage and per-request latency. Prior work has largely focused on reducing token usage, often at the expense of accuracy, while overlooking other latency factors. We present DUCHESS, an LLM serving system that reduces cost and latency without sacrificing accuracy through intra-request branch orchestration guided by predictions. DUCHESS employs a lightweight linear probing model over LLM layer activations to estimate branch correctness, and its orchestration policy decides whether to terminate, duplicate, or continue a branch. When handling multiple requests, DUCHESS further reduces latency by prioritizing easier reasoning tasks when complexity can be estimated from the prompt. Experiments on three reasoning benchmarks show that DUCHESS consistently improves the token-accuracy Pareto frontier, reducing token usage by 42-63% at matched accuracy compared to self-consistency. In serving with vLLM, DUCHESS reduces mean, median, and tail latencies by 57-81%, 58-85%, and 52-84% with First-Come-First-Served scheduling, and achieves additional gains under difficulty-aware scheduling at higher request rates.
- Abstract(参考訳): 大規模言語モデル(LLM)は、複雑なタスクの正確性を改善するために、チェーンオブ思考やマルチブランチ推論のような推論時推論アルゴリズムにますます依存している。
しかし、これらの方法はトークンの使用量とリクエスト毎のレイテンシを大幅に増加させる。
それまでの作業は、トークンの使用を減らすことを中心に、多くの場合、正確さを犠牲にしつつ、他のレイテンシ要因を見越すことに重点を置いていた。
本稿では,LLMサービスシステムであるDUCHESSについて,予測によって導かれるリクエスト内ブランチオーケストレーションにより,精度を犠牲にすることなく,コストとレイテンシを低減できるシステムを提案する。
DUCHESSはLLM層のアクティベーションよりも軽量な線形探索モデルを用いて分岐の正しさを推定し、そのオーケストレーションポリシーは分岐を終了するか、複製するか、継続するかを決定する。
複数のリクエストを処理する場合、DUCHESSは、プロンプトから複雑さを推定できる場合には、より簡単な推論タスクを優先順位付けすることで、レイテンシをさらに削減する。
3つの推論ベンチマークの実験により、DUCHESSはトークン精度のParetoフロンティアを一貫して改善し、自己整合性と比較して一致する精度でトークンの使用量を42-63%削減した。
vLLMを利用する場合、DUCHESSは平均、中央値、テールレイテンシを57-81%、58-85%、52-84%減らす。
関連論文リスト
- Reasoning Efficiently Through Adaptive Chain-of-Thought Compression: A Self-Optimizing Framework [10.148124073650349]
Chain-of-Thought(CoT)推論はLarge Language Models(LLMs)を強化する
より長いアウトプットは、レイテンシ、メモリ使用量、KV-cache要求を増加させる。
精度を保ちながらCOTを圧縮する適応型フレームワークSEER(Self-Enhancing Efficient Reasoning)を提案する。
論文 参考訳(メタデータ) (2025-09-17T15:33:44Z) - R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning [80.104336426172]
CoT(Chain-of- Thought)は、大規模言語モデルの問題解決能力を高める。
CoTは長い自己回帰軌道のためにかなりの推論コストを発生させる。
トレーニング不要なハイブリッドデコーディングフレームワークであるR-Stitchを紹介する。
論文 参考訳(メタデータ) (2025-07-23T08:14:36Z) - Semi-Clairvoyant Scheduling of Speculative Decoding Requests to Minimize LLM Inference Latency [4.372762934308627]
本稿では,LAPS-SD(Least-Attained/Perceived-Service for Speculative Decoding)と呼ばれる半クレアボイト要求スケジューリングアルゴリズムを提案する。
LAPS-SDは、デコーディング中に、要求を特徴に応じて適応的にスケジューリングすることで、平均推論遅延を効果的に最小化することができる。
LAPS-SDは、最先端のスケジューリング手法と比較して、推論遅延を約39%削減する。
論文 参考訳(メタデータ) (2025-05-20T04:12:37Z) - Thinking Short and Right Over Thinking Long: Serving LLM Reasoning Efficiently and Accurately [29.018731931275138]
大規模言語モデル(LLM)は、所定の要求に応答するChain-of-Thought推論を生成することで、より優れた機能を得ることができる。
しかし,2つのスケーリング次元を取り入れた場合,システム効率は2つの理由から著しく低下する。
本稿では,効率的なLLM推論のためのサービスフレームワークであるSARTについて述べる。
論文 参考訳(メタデータ) (2025-05-19T16:34:56Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
完全CoTと解のみのサンプリングを補間する統合推論時間戦略であるフラクチャードサンプリングを導入する。
フラクチャードサンプリングは、Pass@kとトークンの予算に対して、急激なログ線形スケーリングゲインをもたらすため、優れた精度とコストのトレードオフを一貫して達成できることを示す。
論文 参考訳(メタデータ) (2025-05-19T11:30:41Z) - SpecReason: Fast and Accurate Inference-Time Compute via Speculative Reasoning [14.020244011380063]
SpecReasonは、LEM推論を加速するシステムである。
最終回答の正確性を維持する上で、思考トークンのセマンティックな柔軟性を利用する。
バニラLEM推論よりも1.4-3.0times$のスピードアップを実現している。
論文 参考訳(メタデータ) (2025-04-10T16:05:19Z) - Efficiently Scaling LLM Reasoning with Certaindex [25.549811985276488]
テストタイム推論アルゴリズムは、精度を向上することなく、多くのトークンを無駄に生成することができる。
本稿では,アルゴリズムに依存しない測定値であるCertaindexを導入する。
Certaindexは軽量で、早期終了による推論プログラムの推論を加速し、動的トークン割り当てを可能にする。
論文 参考訳(メタデータ) (2024-12-30T14:57:53Z) - SampleAttention: Near-Lossless Acceleration of Long Context LLM Inference with Adaptive Structured Sparse Attention [53.4441894198495]
大きな言語モデル(LLM)は、非常に長いコンテキストウィンドウをサポートするようになった。
バニラの注意の二次的な複雑さは、TTFT(Time-to-First-Token)レイテンシを著しく長くする。
適応型構造とほぼロスレスなスパースアテンションであるSampleAttentionを提案する。
論文 参考訳(メタデータ) (2024-06-17T11:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。