論文の概要: BRIDGE -- Building Reinforcement-Learning Depth-to-Image Data Generation Engine for Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2509.25077v2
- Date: Tue, 30 Sep 2025 14:38:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:44:59.890482
- Title: BRIDGE -- Building Reinforcement-Learning Depth-to-Image Data Generation Engine for Monocular Depth Estimation
- Title(参考訳): BRIDGE -- 単眼深度推定のための強化学習深度画像生成エンジン
- Authors: Dingning Liu, Haoyu Guo, Jingyi Zhou, Tong He,
- Abstract要約: BRIDGEはRL最適化Deep-to-image(D2I)生成フレームワークである。
現実的かつ幾何学的に正確なRGB画像を20万枚以上合成する。
我々は,このデータセット上で,ハイブリッド監視戦略を用いて深度推定モデルを訓練する。
- 参考スコア(独自算出の注目度): 17.554501937884172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular Depth Estimation (MDE) is a foundational task for computer vision. Traditional methods are limited by data scarcity and quality, hindering their robustness. To overcome this, we propose BRIDGE, an RL-optimized depth-to-image (D2I) generation framework that synthesizes over 20M realistic and geometrically accurate RGB images, each intrinsically paired with its ground truth depth, from diverse source depth maps. Then we train our depth estimation model on this dataset, employing a hybrid supervision strategy that integrates teacher pseudo-labels with ground truth depth for comprehensive and robust training. This innovative data generation and training paradigm enables BRIDGE to achieve breakthroughs in scale and domain diversity, consistently outperforming existing state-of-the-art approaches quantitatively and in complex scene detail capture, thereby fostering general and robust depth features. Code and models are available at https://dingning-liu.github.io/bridge.github.io/.
- Abstract(参考訳): 単眼深度推定(MDE)はコンピュータビジョンの基本課題である。
従来の手法はデータの不足と品質によって制限されており、その堅牢性を妨げる。
そこで本研究では,RL最適化深度画像生成フレームワークBRIDGEを提案する。
そして,このデータセット上で,教師の擬似ラベルと地上の真理深度を統合した総合的かつ堅牢な学習を行うハイブリッド監視戦略を用いて,深度推定モデルを訓練する。
この革新的なデータ生成とトレーニングのパラダイムにより、BRIDGEはスケールとドメインの多様性のブレークスルーを達成でき、既存の最先端のアプローチを定量的に、複雑なシーンの詳細なキャプチャで一貫して上回り、汎用的で堅牢な深度特徴を育むことができる。
コードとモデルはhttps://dingning-liu.github.io/bridge.github.io/で公開されている。
関連論文リスト
- Propagating Sparse Depth via Depth Foundation Model for Out-of-Distribution Depth Completion [33.854696587141355]
本研究では,大規模トレーニングを伴わずに,深度基礎モデルを利用して顕著な堅牢性を実現する新しい深度補修フレームワークを提案する。
具体的には、深度基盤モデルを用いて、RGB画像から構造的・意味的文脈を含む環境条件を抽出し、疎度情報の欠落領域への伝播を誘導する。
我々のフレームワークはOODシナリオにおいて非常によく機能し、既存の最先端の深度補完手法よりも優れています。
論文 参考訳(メタデータ) (2025-08-07T02:38:24Z) - DepthLab: From Partial to Complete [80.58276388743306]
不足する値は、幅広いアプリケーションにわたる深度データにとって共通の課題である。
この作業は、イメージ拡散プリエントを利用した基礎深度塗装モデルであるDepthLabと、このギャップを埋めるものだ。
提案手法は,3Dシーンのインペイント,テキストから3Dシーン生成,DUST3Rによるスパースビュー再構成,LiDAR深度補完など,様々なダウンストリームタスクにおいて有用であることを示す。
論文 参考訳(メタデータ) (2024-12-24T04:16:38Z) - MetricGold: Leveraging Text-To-Image Latent Diffusion Models for Metric Depth Estimation [9.639797094021988]
MetricGoldは、生成拡散モデルの豊富な先行値を利用して、メートル法深さ推定を改善する新しいアプローチである。
我々の実験は、多様なデータセットをまたいだ堅牢な一般化を実証し、よりシャープで高品質なメートル法深さ推定を導出する。
論文 参考訳(メタデータ) (2024-11-16T20:59:01Z) - Virtually Enriched NYU Depth V2 Dataset for Monocular Depth Estimation: Do We Need Artificial Augmentation? [61.234412062595155]
我々は、単眼深度推定のために設計された、ニューヨーク深度v2データセットの事実上拡張版であるANYUを紹介する。
仮想世界の完全な3Dシーンを利用して人工データセットを生成する、よく知られたアプローチとは対照的に、ANYUはバーチャルリアリティーオブジェクトのRGB-D表現を取り入れて作成された。
ANYUは,アーキテクチャがかなり異なるディープニューラルネットワークの単眼深度推定性能と一般化を改善したことを示す。
論文 参考訳(メタデータ) (2024-04-15T05:44:03Z) - Confidence-Aware RGB-D Face Recognition via Virtual Depth Synthesis [48.59382455101753]
2D顔認証は、照明、閉塞、ポーズの変化により、制約のない環境において課題に遭遇する。
近年の研究では、深度情報を組み込んだRGB-D顔認証に焦点が当てられている。
本研究では,まず,深度モデル事前学習のための3次元Morphable Modelsによって生成された多様な深度データセットを構築する。
そこで本研究では,手軽に利用できるRGBと深度モデルを利用したドメイン非依存の事前学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:12:24Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
我々は、余分なデータやアノテーションを必要とせずに、幾何学保存深度を予測するためにモデルを訓練する学習フレームワークを提案する。
包括的な実験は、我々のフレームワークの優れた一般化能力を強調します。
我々の革新的な損失関数は、ドメイン固有のスケール・アンド・シフト係数を自律的に復元するモデルを可能にします。
論文 参考訳(メタデータ) (2023-09-18T12:36:39Z) - STDG: Semi-Teacher-Student Training Paradigram for Depth-guided
One-stage Scene Graph Generation [12.966573395667329]
STDGはAvant-garde Depth-Guided One-Stage Scene Graph Generationの方法論である。
STDGの革新的なアーキテクチャは、カスタムビルドモジュールのトリアードである。
実験により,本手法は1段階のシーングラフ生成ベースラインの性能を大幅に向上させることを確認した。
論文 参考訳(メタデータ) (2023-09-15T06:06:33Z) - Monocular Depth Estimation using Diffusion Models [39.27361388836347]
トレーニングデータにおけるノイズや不完全な深度マップに起因する問題に対処するイノベーションを導入する。
教師付き訓練におけるデータの可用性の限界に対処するために,自己教師付き画像-画像間翻訳タスクの事前学習を利用する。
我々のDepthGenモデルは、屋内のNYUデータセット上で、および屋外のKITTIデータセット上でのSOTA結果に近いSOTA性能を達成する。
論文 参考訳(メタデータ) (2023-02-28T18:08:21Z) - CoMAE: Single Model Hybrid Pre-training on Small-Scale RGB-D Datasets [50.6643933702394]
本稿では,RGBと深度変調のための単一モデル自己教師型ハイブリッド事前学習フレームワークについて述べる。
我々のCoMAEは、コントラスト学習とマスク画像モデリングという2つの一般的な自己教師付き表現学習アルゴリズムを統合するためのカリキュラム学習戦略を提示している。
論文 参考訳(メタデータ) (2023-02-13T07:09:45Z) - Towards Reliable Image Outpainting: Learning Structure-Aware Multimodal
Fusion with Depth Guidance [49.94504248096527]
異なるモードの特徴表現をモデル化するためのDGONet(Depth-Guided Outpainting Network)を提案する。
1)マルチモーダル学習モジュールは、異なるモーダル特性の観点から独自の深さとRGBの特徴表現を生成する。
我々は、不明瞭な輪郭を増進し、信頼性の高いコンテンツ生成を迅速化するために、クロスモーダルロスとエッジロスからなる追加の制約戦略を特別に設計する。
論文 参考訳(メタデータ) (2022-04-12T06:06:50Z) - Unpaired Single-Image Depth Synthesis with cycle-consistent Wasserstein
GANs [1.0499611180329802]
実環境深度のリアルタイム推定は、様々な自律システムタスクにとって必須のモジュールである。
本研究では、生成型ニューラルネットワークの分野における最近の進歩を、教師なしの単一画像深度合成に活用する。
論文 参考訳(メタデータ) (2021-03-31T09:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。