論文の概要: Visual Jigsaw Post-Training Improves MLLMs
- arxiv url: http://arxiv.org/abs/2509.25190v1
- Date: Mon, 29 Sep 2025 17:59:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:44:59.90542
- Title: Visual Jigsaw Post-Training Improves MLLMs
- Title(参考訳): Visual Jigsaw Post-TrainingがMLLMを改善した
- Authors: Penghao Wu, Yushan Zhang, Haiwen Diao, Bo Li, Lewei Lu, Ziwei Liu,
- Abstract要約: 大規模言語モデル(MLLM)における視覚的理解を強化するために設計された,汎用的な自己教師型ポストトレーニングフレームワークであるVisual Jigsawを紹介する。
視覚的な入力は分割され、シャッフルされ、モデルは自然言語で正しい置換を生成することで視覚情報を再構築する必要がある。
広範囲な実験により、微粒な知覚、時間的推論、空間的理解が大幅に改善された。
- 参考スコア(独自算出の注目度): 58.29961336087896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning based post-training has recently emerged as a powerful paradigm for enhancing the alignment and reasoning capabilities of multimodal large language models (MLLMs). While vision-centric post-training is crucial for enhancing MLLMs' intrinsic understanding of visual signals, current post-training paradigms are predominantly text-centric, where dense visual inputs are only leveraged to extract sparse cues for text-based reasoning. There exist a few approaches in this direction, however, they often still rely on text as an intermediate mediator or introduce additional visual generative designs. In this work, we introduce Visual Jigsaw, a generic self-supervised post-training framework designed to strengthen visual understanding in MLLMs. Visual Jigsaw is formulated as a general ordering task: visual inputs are partitioned, shuffled, and the model must reconstruct the visual information by producing the correct permutation in natural language. This naturally aligns with reinforcement learning from verifiable rewards (RLVR), requires no additional visual generative components, and derives its supervisory signal automatically without any annotations. We instantiate Visual Jigsaw across three visual modalities, including images, videos, and 3D data. Extensive experiments demonstrate substantial improvements in fine-grained perception, temporal reasoning, and 3D spatial understanding. Our findings highlight the potential of self-supervised vision-centric tasks in post-training MLLMs and aim to inspire further research on vision-centric pretext designs. Project Page: https://penghao-wu.github.io/visual_jigsaw/
- Abstract(参考訳): 強化学習に基づくポストトレーニングは、最近、マルチモーダル大言語モデル(MLLM)のアライメントと推論能力を高めるための強力なパラダイムとして登場した。
視覚中心のポストトレーニングは、MLLMの視覚信号の本質的な理解を高めるために重要であるが、現在のポストトレーニングパラダイムは主にテキスト中心であり、高密度な視覚入力はテキストベースの推論のためにスパースキューを抽出するためにのみ活用される。
この方向にはいくつかのアプローチがあるが、それでも中間メディエータとしてテキストに依存したり、追加の視覚生成設計を導入したりすることが多い。
本稿では,MLLMの視覚的理解を強化するために設計された,汎用的な自己教師型ポストトレーニングフレームワークであるVisual Jigsawを紹介する。
視覚的な入力は分割され、シャッフルされ、モデルは自然言語で正しい置換を生成することで視覚情報を再構築する必要がある。
これは、検証可能な報酬(RLVR)からの強化学習と自然に一致し、追加の視覚的生成要素を必要とせず、アノテーションなしで自動的に監督シグナルを導出する。
画像、ビデオ、および3Dデータを含む3つの視覚的モダリティでVisual Jigsawをインスタンス化する。
広範囲な実験により、微粒な知覚、時間的推論、空間的理解が大幅に改善された。
本研究は,学習後MLLMにおける自己指導型視覚中心型タスクの可能性を強調し,視覚中心型プリテキストデザインのさらなる研究をめざすものである。
Project Page: https://penghao-wu.github.io/visual_jigsaw/
関連論文リスト
- Visual Representation Alignment for Multimodal Large Language Models [38.319869213758686]
マルチモーダルな大規模言語モデル (MLLM) は、視覚的指導のチューニングで訓練され、様々なタスクにまたがって高い性能を達成している。
しかし、それらはオブジェクトのカウントや空間的推論のような視覚中心のタスクに限られている。
本稿では、MLLMの内部視覚表現と事前学習された視覚基盤モデルとを整合させる、シンプルで効果的な正規化戦略である視覚表現アライメント(VIRAL)を提案する。
論文 参考訳(メタデータ) (2025-09-09T17:59:14Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
マルチモーダル大言語モデル(MLLM)に視覚的プロンプトを注入する学習自由手法を提案する。
我々は,エネルギー関数に基づいて学習可能な潜伏変数を最適化し,注目マップにおける参照領域の強度を高める。
提案手法は,参照能力のMLLMへの統合に有望な方向を与え,ボックス,マスク,スクリブル,ポイントによる参照を支援する。
論文 参考訳(メタデータ) (2024-07-31T11:40:29Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - ClawMachine: Learning to Fetch Visual Tokens for Referential Comprehension [71.03445074045092]
我々はClawMachineを提案し、視覚トークンのグループのトークン集合を用いて各エンティティに明示的に通知する新しい方法論を提案する。
追加構文を用いることなく視覚的参照タスクのプロンプトと応答を統一する手法を提案する。
ClawMachineは、高い効率でシーンレベルおよび参照理解タスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-06-17T08:39:16Z) - Self-Training Large Language Models for Improved Visual Program Synthesis With Visual Reinforcement [93.73648674743097]
ビジュアルプログラム合成は、構成型コンピュータビジョンタスクのための大規模言語モデルの推論能力を利用するための有望なアプローチである。
それまでの作業では、視覚プログラムを合成するために、凍結LDMを使用した数発のプロンプトを使用していた。
トレーニング用ビジュアルプログラムのデータセットは存在せず、ビジュアルプログラムデータセットの取得は簡単にクラウドソーシングできない。
論文 参考訳(メタデータ) (2024-04-06T13:25:00Z) - Frozen Transformers in Language Models Are Effective Visual Encoder Layers [26.759544759745648]
大きな言語モデル(LLM)は、言語がないときに純粋に視覚的なタスクに対して驚くほど強力なエンコーダである。
我々の研究は、コンピュータビジョンタスクにLLMを活用することの限界を推し進めている。
視覚符号化における事前学習LLMの有効性を説明するために,情報フィルタリング仮説を提案する。
論文 参考訳(メタデータ) (2023-10-19T17:59:05Z) - Visually-augmented pretrained language models for NLP tasks without
images [77.74849855049523]
既存のソリューションはしばしば視覚的知識増強のために明示的なイメージに依存している。
我々は、新しいtextbfVisually-textbfAugmented fine-tuningアプローチを提案する。
我々のアプローチは、BERT、RoBERTa、BART、T5を異なるスケールで継続的に改善することができる。
論文 参考訳(メタデータ) (2022-12-15T16:13:25Z) - Learning Visual Representations with Caption Annotations [19.24013129952071]
本稿では,視覚的表現をイメージ・キャプション・ペア上で学習するプロキシ・タスクを提案する。
ICMLMは視覚的手がかりに頼って字幕中のマスキング語を予測する。
実験の結果,画像キャプションを利用してグローバルな意味情報を視覚表現に注入できることが確認された。
論文 参考訳(メタデータ) (2020-08-04T08:04:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。