論文の概要: Effectiveness of Large Language Models in Simulating Regional Psychological Structures: An Empirical Examination of Personality and Subjective Well-being
- arxiv url: http://arxiv.org/abs/2509.25283v1
- Date: Mon, 29 Sep 2025 09:12:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.23184
- Title: Effectiveness of Large Language Models in Simulating Regional Psychological Structures: An Empirical Examination of Personality and Subjective Well-being
- Title(参考訳): 地域心理学構造シミュレーションにおける大規模言語モデルの有効性:個人性と主観的幸福感の実証検討
- Authors: Ke Luoma, Li Zengyi, Liao Jiangqun, Tong Song, Peng Kaiping,
- Abstract要約: 本研究では, LLMが人口統計情報に基づいて, 文化的根拠を持つ心理的パターンをシミュレートできるかどうかを検討する。
模擬参加者は、外転や開放性が低下し、同意性や神経症が向上し、常に幸福度が低下した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study examines whether LLMs can simulate culturally grounded psychological patterns based on demographic information. Using DeepSeek, we generated 2943 virtual participants matched to demographic distributions from the CFPS2018 and compared them with human responses on the Big Five personality traits and subjective well-being across seven Chinese regions.Personality was measured using a 15-item Chinese Big Five inventory, and happiness with a single-item rating. Results revealed broad similarity between real and simulated datasets, particularly in regional variation trends. However, systematic differences emerged:simulated participants scored lower in extraversion and openness, higher in agreeableness and neuroticism, and consistently reported lower happiness. Predictive structures also diverged: while human data identified conscientiousness, extraversion and openness as positive predictors of happiness, the AI emphasized openness and agreeableness, with extraversion predicting negatively. These discrepancies suggest that while LLMs can approximate population-level psychological distributions, they underrepresent culturally specific and affective dimensions. The findings highlight both the potential and limitations of LLM-based virtual participants for large-scale psychological research and underscore the need for culturally enriched training data and improved affective modeling.
- Abstract(参考訳): 本研究では, LLMが人口統計情報に基づいて, 文化的根拠を持つ心理的パターンをシミュレートできるかどうかを検討する。
DeepSeekを用いて、CFPS2018の人口分布と一致した2943人の仮想参加者を作成した。これらを、ビッグファイブの性格特性や7つの中国地域における主観的幸福感に対する人間の反応と比較した。
その結果,特に地域変動傾向において,実データと模擬データセットの間に大きな類似性が認められた。
しかし、シミュレートされた参加者は、外転や開放性が低いこと、同意性や神経症が低いこと、幸せが低いことを一貫して報告している。
人間のデータは、幸福の肯定的な予測因子として、良心、外向、開放性を識別する一方で、AIは、外向を否定的に予測し、オープン性と同意性を強調した。
これらの相違は、LLMが人口レベルの心理的分布を近似できる一方で、文化的に具体的かつ感情的な次元を過小評価していることを示唆している。
本研究は, LLMを基盤とした大規模心理学研究における仮想参加者の可能性と限界を強調し, 文化的に豊かなトレーニングデータの必要性と, 感情モデルの改善を強調した。
関連論文リスト
- Evaluating the Simulation of Human Personality-Driven Susceptibility to Misinformation with LLMs [0.18416014644193066]
大規模言語モデル(LLM)により、大規模に合成行動データを生成することができる。
我々は,誤情報に対する個人的影響の変動を再現するために,Big-Fiveプロファイルに規定されたLLMエージェントの能力を評価する。
論文 参考訳(メタデータ) (2025-06-30T08:16:07Z) - Evaluating Personality Traits in Large Language Models: Insights from Psychological Questionnaires [3.6001840369062386]
この研究は、多種多様なシナリオにおける大規模言語モデルに心理学的ツールを適用し、パーソナリティプロファイルを生成する。
以上の結果から, LLMは, 同一モデル群においても, 特徴, 特徴, 性格の異なる特徴を示すことが明らかとなった。
論文 参考訳(メタデータ) (2025-02-07T16:12:52Z) - Large Language Models as Neurolinguistic Subjects: Discrepancy between Performance and Competence [49.60849499134362]
本研究では,大言語モデル(LLM)の記号化(形式)および記号化(意味)に関する言語的理解について検討する。
ミニマルペアと診断プローブを組み合わせてモデル層間のアクティベーションパターンを解析する新しい手法を用いて,ニューロ言語学的アプローチを提案する。
その結果,(1)心理言語学的・神経言語学的手法では,言語能力と能力が異なっていること,(2)直接確率測定では言語能力が正確に評価されないこと,(3)指導のチューニングでは能力が大きく変化しないが,性能は向上しないことがわかった。
論文 参考訳(メタデータ) (2024-11-12T04:16:44Z) - BIG5-CHAT: Shaping LLM Personalities Through Training on Human-Grounded Data [28.900987544062257]
BIG5-CHATは、人間が言語で人格を表現する方法のモデルを構築するために設計された10万の対話を含む大規模なデータセットである。
提案手法は,BFIやIPIP-NEOなどの人格評価に優れ,特徴相関は人的データとより密に一致している。
実験の結果,高良性,高良性,低外転,低神経障害を訓練したモデルでは,推論タスクの性能が向上することが判明した。
論文 参考訳(メタデータ) (2024-10-21T20:32:27Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
社会デマトグラフィープロンプトは、特定の社会デマトグラフィープロファイルを持つ人間が与える答えに向けて、プロンプトベースのモデルの出力を操縦する技術である。
ソシオデマトグラフィー情報はモデル予測に影響を及ぼし、主観的NLPタスクにおけるゼロショット学習を改善するのに有用であることを示す。
論文 参考訳(メタデータ) (2023-09-13T15:42:06Z) - Large Language Models Can Infer Psychological Dispositions of Social Media Users [1.0923877073891446]
GPT-3.5とGPT-4は、ゼロショット学習シナリオにおいて、ユーザのFacebookステータス更新からビッグファイブの性格特性を導出できるかどうかを検証する。
その結果, LLM-inferred と self-reported trait score の間には r =.29 (range = [.22,.33]) の相関が認められた。
予測は、いくつかの特徴について、女性と若い個人にとってより正確であることが判明し、基礎となるトレーニングデータやオンライン自己表現の違いから生じる潜在的なバイアスが示唆された。
論文 参考訳(メタデータ) (2023-09-13T01:27:48Z) - Personality Traits in Large Language Models [42.31355340867784]
コミュニケーションの有効性を決定する重要な要因は人格である。
本稿では,広く使用されている大規模言語モデル上でのパーソナリティテストの管理と検証のための,新しい,包括的・包括的心理学的・信頼性の高い方法論を提案する。
本稿では,計測・形成手法の適用と倫理的意味,特に責任あるAIについて論じる。
論文 参考訳(メタデータ) (2023-07-01T00:58:51Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
本研究の目的は,大規模言語モデルにパーソナリティアセスメントを適用することの信頼性を明らかにすることである。
GPT-3.5、GPT-4、Gemini-Pro、LLaMA-3.1などのモデル毎の2,500設定の分析により、様々なLCMがビッグファイブインベントリに応答して一貫性を示すことが明らかになった。
論文 参考訳(メタデータ) (2023-05-31T15:03:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。