論文の概要: Flash-Searcher: Fast and Effective Web Agents via DAG-Based Parallel Execution
- arxiv url: http://arxiv.org/abs/2509.25301v1
- Date: Mon, 29 Sep 2025 17:39:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.24677
- Title: Flash-Searcher: Fast and Effective Web Agents via DAG-Based Parallel Execution
- Title(参考訳): Flash-Searcher: DAGベースの並列実行による高速で効果的なWebエージェント
- Authors: Tianrui Qin, Qianben Chen, Sinuo Wang, He Xing, King Zhu, He Zhu, Dingfeng Shi, Xinxin Liu, Ge Zhang, Jiaheng Liu, Yuchen Eleanor Jiang, Xitong Gao, Wangchunshu Zhou,
- Abstract要約: Flash-Searcherは、新しい並列エージェント推論フレームワークである。
複雑なタスクを明示的な依存関係でサブタスクに分解し、独立した推論パスの同時実行を可能にする。
BrowseCompでは67.7%の精度で、xbench-DeepSearchでは83%、エージェントの実行手順は現在のフレームワークに比べて最大35%削減されている。
- 参考スコア(独自算出の注目度): 48.7788770680643
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks when equipped with external tools. However, current frameworks predominantly rely on sequential processing, leading to inefficient execution particularly for tasks requiring extensive tool interaction. This paper introduces Flash-Searcher, a novel parallel agent reasoning framework that fundamentally reimagines the execution paradigm from sequential chains to directed acyclic graphs (DAGs). Flash-Searcher decomposes complex tasks into subtasks with explicit dependencies, enabling concurrent execution of independent reasoning paths while maintaining logical constraints. Through dynamic workflow optimization, our framework continuously refines the execution graph based on intermediate results, effectively integrating summary module. Comprehensive evaluations across multiple benchmarks demonstrate that Flash-Searcher consistently outperforms existing approaches. Specifically, it achieves 67.7% accuracy on BrowseComp and 83% on xbench-DeepSearch, while reducing agent execution steps by up to 35% compared to current frameworks. Furthermore, when distilling this parallel reasoning pipeline into single models, we observe substantial performance gains across diverse backbone architectures, underscoring the generalizability of our methodology. Our work thus represents a significant advance in agent architecture design, offering a more scalable and efficient paradigm for complex reasoning tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、外部ツールを備えた場合、複雑な推論タスクにおいて顕著な機能を示す。
しかし、現在のフレームワークは主にシーケンシャルな処理に依存しており、特に大規模なツールインタラクションを必要とするタスクに対して非効率な実行につながっている。
本稿では,並列エージェント推論フレームワークであるFlash-Searcherを紹介する。
Flash-Searcherは、複雑なタスクを明示的な依存関係を持つサブタスクに分解し、論理的制約を維持しながら独立した推論パスの同時実行を可能にする。
動的ワークフロー最適化により,このフレームワークは中間結果に基づいて実行グラフを改良し,要約モジュールを効果的に統合する。
複数のベンチマークにわたる総合的な評価は、Flash-Searcherが既存のアプローチを一貫して上回っていることを示している。
具体的には、BrowseCompで67.7%、xbench-DeepSearchで83%の精度を実現し、エージェントの実行手順を現在のフレームワークと比較して最大35%削減している。
さらに, この並列推論パイプラインを単一モデルに蒸留する場合, 種々のバックボーンアーキテクチャ間での大幅な性能向上を観察し, 方法論の一般化可能性を強調した。
私たちの作業はエージェントアーキテクチャ設計の大幅な進歩を表しており、複雑な推論タスクに対してよりスケーラブルで効率的なパラダイムを提供します。
関連論文リスト
- DyFlow: Dynamic Workflow Framework for Agentic Reasoning [79.19799197382478]
DyFlowは動的ワークフロー生成フレームワークで、タスク要求とリアルタイム中間フィードバックに基づいて推論手順を適応的に構築し、調整する。
社会的推論,生物医学的タスク,数学的問題解決,コード生成など,さまざまな領域でDyFlowを体系的に評価する。
結果は、DyFlowが既存のベースラインを大幅に上回り、Pass@kの改善を実現し、さまざまなドメインにわたって堅牢な一般化を示すことを示した。
論文 参考訳(メタデータ) (2025-09-30T10:36:23Z) - A2R: An Asymmetric Two-Stage Reasoning Framework for Parallel Reasoning [57.727084580884075]
モデルポテンシャルと実際の性能の間のギャップを埋めるために設計された非対称な2段階推論フレームワーク。
A2R-Efficientは、Qwen3-4BとQwen3-8Bシンセサイザーを組み合わせた「小型から大型」の派生型である。
その結果、A2Rはパフォーマンス・ブートスティングのフレームワークであるだけでなく、現実世界のアプリケーションに対して効率的かつ実用的なソリューションであることがわかった。
論文 参考訳(メタデータ) (2025-09-26T08:27:03Z) - Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
テスト時間スケーリングを備えたマルチエージェント協調フレームワークであるMACTを提案する。
4つの異なる小規模エージェントから構成され、明確に定義された役割と効果的なコラボレーションがある。
一般および数学的タスクの能力を犠牲にすることなく、より小さなパラメータスケールで優れた性能を示す。
論文 参考訳(メタデータ) (2025-08-05T12:52:09Z) - AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search [58.98450205734779]
大規模言語モデル(LLM)エージェントは、多様なドメインにまたがる強力な機能を示している。
既存のエージェントサーチ手法には3つの大きな制限がある。
これらの課題に対処するための包括的なフレームワークを導入します。
論文 参考訳(メタデータ) (2025-06-06T12:07:23Z) - Unifying Language Agent Algorithms with Graph-based Orchestration Engine for Reproducible Agent Research [32.92036657863354]
大規模言語モデル(LLM)を利用した言語エージェントは、複雑なタスクの理解、推論、実行において顕著な能力を示した。
しかし、堅牢なエージェントの開発には、相当なエンジニアリングオーバーヘッド、標準化されたコンポーネントの欠如、公正な比較のための十分な評価フレームワークなど、大きな課題がある。
我々はこれらの課題に対処するフレキシブルで抽象的なフレームワークであるAGORA(Agent Graph-based Orchestration for Reasoning and Assessment)を紹介した。
論文 参考訳(メタデータ) (2025-05-30T08:46:23Z) - syftr: Pareto-Optimal Generative AI [40.80352098169579]
syftrはエージェントと非エージェントのRAG構成の広い領域で効率的な多目的探索を行うフレームワークである。
Syftrは、最も正確な流れの正確さを保ちながら、平均して9倍のコストで流れを見つける。
論文 参考訳(メタデータ) (2025-05-26T17:43:13Z) - Flow: Modularized Agentic Workflow Automation [53.073598156915615]
大規模言語モデル(LLM)を利用したマルチエージェントフレームワークは、自動計画とタスク実行において大きな成功を収めている。
しかし, 実行中のエージェントの効果的な調整は十分に研究されていない。
本稿では,エージェントによる継続的なワークフロー改善を可能にするアクティビティ・オン・頂点(AOV)グラフを定義する。
提案するマルチエージェントフレームワークは,サブタスクの効率的な同時実行,効果的なゴール達成,エラー耐性の向上を実現している。
論文 参考訳(メタデータ) (2025-01-14T04:35:37Z) - Research on the Application of Spark Streaming Real-Time Data Analysis System and large language model Intelligent Agents [1.4582633500696451]
本研究では、ビッグデータ環境におけるリアルタイムデータ分析システムを強化するために、Agent AIとLangGraphの統合について検討する。
提案したフレームワークは、静的で非効率なステートフル計算の限界を克服し、人間の介入の欠如を克服する。
システムアーキテクチャにはApache Spark Streaming、Kafka、LangGraphが組み込まれ、高性能な感情分析システムを構築する。
論文 参考訳(メタデータ) (2024-12-10T05:51:11Z) - Pruning All-Rounder: Rethinking and Improving Inference Efficiency for Large Vision Language Models [42.124670377223175]
我々は Pruning All-Rounder (PAR) と呼ばれる推論加速のための新しいフレームワークを提案する。
PARは自己教師付き学習方式により、パフォーマンスと効率のバランスが優れている。特に、PARは高い柔軟性を持ち、様々なアクセラレーションシナリオに対処する複数のプルーニングバージョンを提供する。
論文 参考訳(メタデータ) (2024-12-09T13:02:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。