論文の概要: dVLA: Diffusion Vision-Language-Action Model with Multimodal Chain-of-Thought
- arxiv url: http://arxiv.org/abs/2509.25681v1
- Date: Tue, 30 Sep 2025 02:36:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:44:59.985664
- Title: dVLA: Diffusion Vision-Language-Action Model with Multimodal Chain-of-Thought
- Title(参考訳): dVLA:マルチモーダル・チェーン・オブ・サートを用いた拡散ビジョン・ランゲージ・アクションモデル
- Authors: Junjie Wen, Minjie Zhu, Jiaming Liu, Zhiyuan Liu, Yicun Yang, Linfeng Zhang, Shanghang Zhang, Yichen Zhu, Yi Xu,
- Abstract要約: VLA(Vision-Language-Action)モデルは、ロボット工学の次世代パラダイムとして登場しつつある。
単一システムにおける視覚認識,言語推論,ロボット制御を統一する拡散型VLAであるdVLAを紹介する。
- 参考スコア(独自算出の注目度): 66.78110237549087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language-Action (VLA) models are emerging as a next-generation paradigm for robotics. We introduce dVLA, a diffusion-based VLA that leverages a multimodal chain-of-thought to unify visual perception, language reasoning, and robotic control in a single system. dVLA jointly optimizes perception, language understanding, and action under a single diffusion objective, enabling stronger cross-modal reasoning and better generalization to novel instructions and objects. For practical deployment, we mitigate inference latency by incorporating two acceleration strategies, a prefix attention mask and KV caching, yielding up to around times speedup at test-time inference. We evaluate dVLA in both simulation and the real world: on the LIBERO benchmark, it achieves state-of-the-art performance with a 96.4% average success rate, consistently surpassing both discrete and continuous action policies; on a real Franka robot, it succeeds across a diverse task suite, including a challenging bin-picking task that requires multi-step planning, demonstrating robust real-world performance. Together, these results underscore the promise of unified diffusion frameworks for practical, high-performance VLA robotics.
- Abstract(参考訳): VLA(Vision-Language-Action)モデルは、ロボット工学の次世代パラダイムとして登場しつつある。
我々は,視覚認識,言語推論,ロボット制御をひとつのシステムで統一するために,多モーダル連鎖を利用した拡散型VLAであるdVLAを紹介する。
dVLAは、単一の拡散目標の下での知覚、言語理解、行動を共同で最適化し、より強力なクロスモーダル推論を可能にし、新しい命令やオブジェクトへのより良い一般化を可能にする。
実際のデプロイでは、プレフィックスアテンションマスクとKVキャッシングという2つのアクセラレーション戦略を組み込むことで、推論遅延を軽減する。
我々は,dVLAをシミュレーションと実世界の両方で評価する:LIBEROベンチマークでは,96.4%の平均的成功率で,離散的かつ連続的なアクションポリシを一貫して上回り,マルチステップの計画を必要とする難易度の高いビンピッキングタスクや,堅牢な実世界のパフォーマンスの実証など,多様なタスクスイートで成功を収める。
これらの結果は、実用的で高性能なVLAロボティクスのための統合拡散フレームワークの約束を裏付けるものである。
関連論文リスト
- Unified Vision-Language-Action Model [86.68814779303429]
我々は、視覚、言語、行動信号を離散トークンシーケンスとして自動回帰モデル化する、統一的でネイティブなマルチモーダルVLAモデルUniVLAを提案する。
提案手法は, CALVIN, LIBERO, Simplenv-Bridge など, 広く使用されているシミュレーションベンチマークにまたがって, 最新の結果を設定する。
さらに、現実世界のALOHA操作と自律運転に適用可能であることを実証する。
論文 参考訳(メタデータ) (2025-06-24T17:59:57Z) - SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration [69.54069477520534]
VLA(Vision-Language-Action)モデルは、その強力な制御能力に注目が集まっている。
計算コストが高く、実行頻度も低いため、ロボット操作や自律ナビゲーションといったリアルタイムタスクには適さない。
本稿では,共同スケジューリングモデルとプルーニングトークンにより,VLAモデルを高速化する統一フレームワークSP-VLAを提案する。
論文 参考訳(メタデータ) (2025-06-15T05:04:17Z) - CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models [89.44024245194315]
視覚言語行動モデル(VLA)に明示的な視覚連鎖(CoT)推論を組み込む手法を提案する。
視覚およびアクショントークンの理解と生成が可能な最先端の7B VLAであるCoT-VLAを紹介する。
実験の結果,CoT-VLAは実世界の操作タスクでは17%,シミュレーションベンチマークでは6%,最先端のVLAモデルでは6%,高い性能を示した。
論文 参考訳(メタデータ) (2025-03-27T22:23:04Z) - ChatVLA: Unified Multimodal Understanding and Robot Control with Vision-Language-Action Model [21.844214660424175]
ChatVLAは、初期制御熟達後のマルチモーダルデータを段階的に統合するフェーズアライメントトレーニングと、タスク干渉を最小限に抑えるMixture-of-Expertsアーキテクチャを特徴とする、新しいフレームワークである。
ChatVLAは、視覚的問合せデータセット上での競合性能を示し、マルチモーダル理解ベンチマークにおける最先端のビジョン言語アクション(VLA)メソッドを大幅に上回っている。
本研究は,ロバストなマルチモーダル理解と効果的なロボット制御を実現するための統合フレームワークの可能性を明らかにするものである。
論文 参考訳(メタデータ) (2025-02-20T10:16:18Z) - Vision Language Models are In-Context Value Learners [89.29486557646624]
本稿では、視覚言語モデル(VLM)に埋め込まれた世界的知識を活用してタスクの進捗を予測する普遍的価値関数推定器である生成価値学習(GVL)を提案する。
ロボットやタスク固有のトレーニングがなければ、GVLは300以上の異なる現実世界のタスクに対して、ゼロショットと数ショットの効果的な値をインコンテキストで予測することができる。
論文 参考訳(メタデータ) (2024-11-07T09:17:50Z) - TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation [32.406783380729024]
VLA(Vision-Language-Action)モデルは、エンド・ツー・エンドの学習プロセスを通じて、視覚運動制御と命令理解において顕著な可能性を示している。
現在のVLAモデルは、推論中に遅くなり、大量のロボットデータに対して広範な事前トレーニングを必要としているため、重大な課題に直面している。
既存のVLAモデルに対して2つのアドバンテージを提供する,TinyVLAと呼ばれる,コンパクトな視覚言語アクションモデルを導入した。
論文 参考訳(メタデータ) (2024-09-19T07:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。