論文の概要: LiDAR Point Cloud Colourisation Using Multi-Camera Fusion and Low-Light Image Enhancement
- arxiv url: http://arxiv.org/abs/2509.25859v1
- Date: Tue, 30 Sep 2025 06:56:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.460148
- Title: LiDAR Point Cloud Colourisation Using Multi-Camera Fusion and Low-Light Image Enhancement
- Title(参考訳): マルチカメラフュージョンと低照度画像強調を用いたLiDARポイント雲色化
- Authors: Pasindu Ranasinghe, Dibyayan Patra, Bikram Banerjee, Simit Raval,
- Abstract要約: 本研究では,複数のカメラ入力を用いてメカニカルLiDARから色付き点雲を生成する,ハードウェアに依存しない新しい手法を提案する。
主なイノベーションは、低照度条件下での堅牢性であり、低照度画像拡張モジュールの統合によって達成される。
このアルゴリズムは、Velodyne Puck Hi-Res LiDARと4カメラ構成を用いてテストされた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the fusion of camera data with LiDAR measurements has emerged as a powerful approach to enhance spatial understanding. This study introduces a novel, hardware-agnostic methodology that generates colourised point clouds from mechanical LiDAR using multiple camera inputs, providing complete 360-degree coverage. The primary innovation lies in its robustness under low-light conditions, achieved through the integration of a low-light image enhancement module within the fusion pipeline. The system requires initial calibration to determine intrinsic camera parameters, followed by automatic computation of the geometric transformation between the LiDAR and cameras, removing the need for specialised calibration targets and streamlining the setup. The data processing framework uses colour correction to ensure uniformity across camera feeds before fusion. The algorithm was tested using a Velodyne Puck Hi-Res LiDAR and a four-camera configuration. The optimised software achieved real-time performance and reliable colourisation even under very low illumination, successfully recovering scene details that would otherwise remain undetectable.
- Abstract(参考訳): 近年、LiDAR測定とカメラデータの融合は、空間的理解を高めるための強力なアプローチとして現れている。
本研究では,複数のカメラ入力を用いてメカニカルLiDARから色付き点雲を生成する,ハードウェアに依存しない新しい手法を提案する。
主なイノベーションは、低照度条件下での堅牢性であり、核融合パイプライン内の低照度画像拡張モジュールの統合によって達成される。
このシステムは、固有のカメラパラメータを決定するために初期キャリブレーションを必要とし、続いてLiDARとカメラの間の幾何学的変換の自動計算を行い、特別なキャリブレーションターゲットの必要性を排除し、セットアップを合理化する。
データ処理フレームワークは、色補正を使用して、融合前にカメラフィード間の均一性を保証する。
このアルゴリズムは、Velodyne Puck Hi-Res LiDARと4カメラ構成を用いてテストされた。
最適化されたソフトウェアは、非常に低い照明の下でもリアルタイムのパフォーマンスと信頼性の高い色付けを実現し、検出不可能なシーンの詳細を回復した。
関連論文リスト
- SAIGFormer: A Spatially-Adaptive Illumination-Guided Network for Low-Light Image Enhancement [58.79901582809091]
近年, トランスフォーマーを用いた低照度化手法は, 世界照明の回復に有望な進展をもたらした。
近年, トランスフォーマーを用いた低照度化手法は, 世界照明の回復に有望な進展をもたらした。
正確な照明復元を可能にする空間適応照明誘導変圧器フレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-21T11:38:56Z) - Robust LiDAR-Camera Calibration with 2D Gaussian Splatting [0.3281128493853064]
LiDARとカメラデータを統合するための重要な最初のステップは、LiDARカメラシステムの校正である。
既存のキャリブレーション手法の多くは、複雑な手動操作を含む補助対象オブジェクトに依存している。
幾何学的制約を用いたLiDARカメラの外部パラメータを推定するキャリブレーション手法を提案する。
論文 参考訳(メタデータ) (2025-04-01T08:19:26Z) - CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement [7.736775961390864]
CalibRefineは完全に自動化され、ターゲットレス、オンラインキャリブレーションフレームワークである。
生のLiDAR点雲とカメラ画像を直接処理する。
以上の結果から,頑健なオブジェクトレベルの特徴マッチングと反復的改善と自己監督的注意に基づく改善が組み合わさって,信頼性の高いセンサアライメントを実現することが示唆された。
論文 参考訳(メタデータ) (2025-02-24T20:53:42Z) - Discovering an Image-Adaptive Coordinate System for Photography Processing [51.164345878060956]
曲線演算を行う前にRGB色空間における画像適応座標系を学習するための新しいアルゴリズム IAC を提案する。
このエンドツーエンドのトレーニング可能なアプローチにより、共同で学習した画像適応座標系と曲線を用いて、画像の効率よく調整できる。
論文 参考訳(メタデータ) (2025-01-11T06:20:07Z) - LCE-Calib: Automatic LiDAR-Frame/Event Camera Extrinsic Calibration With
A Globally Optimal Solution [10.117923901732743]
LiDARとカメラの組み合わせにより、移動ロボットはマルチモーダルデータで環境を知覚することができる。
従来のフレームカメラは照明条件の変更に敏感で、新しいイベントカメラの導入を動機付けています。
本稿では,LiDARとフレーム/イベントカメラの外部特性をキャリブレーションするためのチェッカーボードによる自動手法を提案する。
論文 参考訳(メタデータ) (2023-03-17T08:07:56Z) - Gait Recognition in Large-scale Free Environment via Single LiDAR [35.684257181154905]
深度を捉えるLiDARの能力は、ロボットの知覚にとって重要な要素であり、現実世界の歩行認識の可能性を秘めている。
本稿では,頑健な歩行認識のための階層型多表現特徴相互作用ネットワーク(HMRNet)を提案する。
LiDARに基づく歩行認識研究を容易にするため,大規模かつ制約のない歩行データセットであるFreeGaitを紹介した。
論文 参考訳(メタデータ) (2022-11-22T16:05:58Z) - LIF-Seg: LiDAR and Camera Image Fusion for 3D LiDAR Semantic
Segmentation [78.74202673902303]
本稿では,LiDAR分割のための粗大なLiDARとカメラフュージョンベースネットワーク(LIF-Seg)を提案する。
提案手法は,画像の文脈情報を完全に活用し,単純だが効果的な早期融合戦略を導入する。
これら2つのコンポーネントの協力により、効果的なカメラ-LiDAR融合が成功する。
論文 参考訳(メタデータ) (2021-08-17T08:53:11Z) - How to Calibrate Your Event Camera [58.80418612800161]
画像再構成を用いた汎用イベントカメラキャリブレーションフレームワークを提案する。
ニューラルネットワークに基づく画像再構成は,イベントカメラの内在的・外在的キャリブレーションに適していることを示す。
論文 参考訳(メタデータ) (2021-05-26T07:06:58Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
パターンベースのキャリブレーション技術は、カメラの内在を個別にキャリブレーションするために使用することができる。
Infrastucture-based calibration techniqueはSLAMやStructure-from-Motionで事前に構築した3Dマップを用いて外部情報を推定することができる。
本稿では,インフラストラクチャベースのアプローチを用いて,マルチカメラシステムをスクラッチから完全にキャリブレーションすることを提案する。
論文 参考訳(メタデータ) (2020-07-30T09:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。