論文の概要: SETR: A Two-Stage Semantic-Enhanced Framework for Zero-Shot Composed Image Retrieval
- arxiv url: http://arxiv.org/abs/2509.26012v1
- Date: Tue, 30 Sep 2025 09:41:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:45:00.08658
- Title: SETR: A Two-Stage Semantic-Enhanced Framework for Zero-Shot Composed Image Retrieval
- Title(参考訳): SETR: ゼロショット合成画像検索のための2段階のセマンティック拡張フレームワーク
- Authors: Yuqi Xiao, Yingying Zhu,
- Abstract要約: Zero-shot Composed Image Retrieval (ZS-CIR)は、トリプルトアノテーションに頼ることなく、参照画像と相対テキストが与えられたターゲット画像を取得することを目的としている。
既存のCLIPベースの手法では、(1)組合ベースの特徴融合は、意図した変更を希釈する無関係な背景の詳細を担いながら、すべての視覚的手がかりを無差別に集約し、(2)CLIP埋め込みからのグローバルなコサイン類似性は、きめ細かいセマンティックな関係を解く能力に欠ける。
- 参考スコア(独自算出の注目度): 4.230223288110963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot Composed Image Retrieval (ZS-CIR) aims to retrieve a target image given a reference image and a relative text, without relying on costly triplet annotations. Existing CLIP-based methods face two core challenges: (1) union-based feature fusion indiscriminately aggregates all visual cues, carrying over irrelevant background details that dilute the intended modification, and (2) global cosine similarity from CLIP embeddings lacks the ability to resolve fine-grained semantic relations. To address these issues, we propose SETR (Semantic-enhanced Two-Stage Retrieval). In the coarse retrieval stage, SETR introduces an intersection-driven strategy that retains only the overlapping semantics between the reference image and relative text, thereby filtering out distractors inherent to union-based fusion and producing a cleaner, high-precision candidate set. In the fine-grained re-ranking stage, we adapt a pretrained multimodal LLM with Low-Rank Adaptation to conduct binary semantic relevance judgments ("Yes/No"), which goes beyond CLIP's global feature matching by explicitly verifying relational and attribute-level consistency. Together, these two stages form a complementary pipeline: coarse retrieval narrows the candidate pool with high recall, while re-ranking ensures precise alignment with nuanced textual modifications. Experiments on CIRR, Fashion-IQ, and CIRCO show that SETR achieves new state-of-the-art performance, improving Recall@1 on CIRR by up to 15.15 points. Our results establish two-stage reasoning as a general paradigm for robust and portable ZS-CIR.
- Abstract(参考訳): Zero-shot Composed Image Retrieval (ZS-CIR)は、トリプルトアノテーションに頼ることなく、参照画像と相対テキストが与えられたターゲット画像を取得することを目的としている。
既存のCLIPベースの手法では、(1)組合ベースの特徴融合は、意図した変更を希釈する無関係な背景の詳細を担いながら、すべての視覚的手がかりを無差別に集約し、(2)CLIP埋め込みからのグローバルなコサイン類似性は、きめ細かいセマンティックな関係を解く能力に欠ける。
これらの問題に対処するため,SETR(Semantic-enhanced Two-Stage Retrieval)を提案する。
粗い検索段階において、SETRは、参照画像と相対テキスト間の重なり合う意味のみを保持する交叉駆動戦略を導入し、それによって、ユニオンベースの融合に固有の散逸をフィルタリングし、よりクリーンで高精度な候補セットを生成する。
微粒化の段階において、Low-Rank Adaptation を用いた事前訓練されたマルチモーダル LLM を適用し、CLIP のグローバルな特徴マッチングを超えて、関係性と属性レベルの整合性を明確に検証する。
これら2つのステージは相補的なパイプラインを形成し、粗い検索は高いリコールで候補プールを狭める。
CIRR、Fashion-IQ、CIRCOの実験では、SETRが新しい最先端のパフォーマンスを実現し、CIRR上のRecall@1を最大15.15ポイント改善している。
本研究は,頑健かつポータブルなZS-CIRの汎用パラダイムとして,二段階推論を確立した。
関連論文リスト
- FAR-Net: Multi-Stage Fusion Network with Enhanced Semantic Alignment and Adaptive Reconciliation for Composed Image Retrieval [36.03123811283016]
セマンティックアライメントとアダプティブアライメントを備えた多段階融合フレームワークであるFAR-Netを提案する。
CIRRとFashionIQの実験は、一貫性のあるパフォーマンス向上を示し、Recall@1を2.4%改善し、Recall@50を1.04%改善した。
論文 参考訳(メタデータ) (2025-07-17T06:30:41Z) - CoTMR: Chain-of-Thought Multi-Scale Reasoning for Training-Free Zero-Shot Composed Image Retrieval [13.59418209417664]
Zero-Shot Composed Image Retrieval (ZS-CIR) は、サンプルをトレーニングすることなく、合成クエリから情報を統合してターゲット画像を取得することを目的としている。
我々は,ZS-CIRのためのトレーニングフリーフレームワークであるCoTMRを提案し,新しいChain-of-Thought(CoT)とマルチスケール推論を提案する。
論文 参考訳(メタデータ) (2025-02-28T08:12:23Z) - Noisy-Correspondence Learning for Text-to-Image Person Re-identification [50.07634676709067]
本稿では,雑音対応においても頑健な視覚関係を学習するための新しいロバスト二重埋め込み法(RDE)を提案する。
提案手法は,3つのデータセット上での合成ノイズ対応と非合成ノイズ対応を両立させる。
論文 参考訳(メタデータ) (2023-08-19T05:34:13Z) - Plug-and-Play Regulators for Image-Text Matching [76.28522712930668]
微細な対応と視覚的セマンティックなアライメントの爆発は、画像とテキストのマッチングにおいて大きな可能性を秘めている。
我々は、メッセージ出力を効率的にエンコードして、コンテキストを自動生成し、モーダル表現を集約する、シンプルだが非常に効果的な2つのレギュレータを開発した。
MSCOCOとFlickr30Kデータセットの実験は、複数のモデルで印象的で一貫したR@1ゲインをもたらすことができることを実証している。
論文 参考訳(メタデータ) (2023-03-23T15:42:05Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
本稿では,単一段階弱教師付きセマンティックセマンティックセマンティックセマンティクス(WSSS)と半教師付きセマンティクスセマンティクスセマンティクス(SSSS)のための自己教師付き低ランクネットワーク(SLRNet)を提案する。
SLRNetは、画像の異なるビューから複数の注意深いLR表現を同時に予測し、正確な擬似ラベルを学習する。
Pascal VOC 2012、COCO、L2IDデータセットの実験では、SLRNetは最先端のWSSSメソッドとSSSSメソッドの両方で、さまざまな設定で優れています。
論文 参考訳(メタデータ) (2022-03-19T09:19:55Z) - Robust Reference-based Super-Resolution via C2-Matching [77.51610726936657]
超解像(Ref-SR)は、最近、高分解能(HR)参照画像を導入して、低分解能(LR)入力画像を強化するための有望なパラダイムとして登場した。
既存のRef-SR法は主に暗黙の対応に頼り、参照画像からHRテクスチャを借用し、入力画像の情報損失を補う。
本稿では,C2-Matchingを提案する。
論文 参考訳(メタデータ) (2021-06-03T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。