論文の概要: Source Separation for A Cappella Music
- arxiv url: http://arxiv.org/abs/2509.26580v1
- Date: Tue, 30 Sep 2025 17:39:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.642239
- Title: Source Separation for A Cappella Music
- Title(参考訳): カペラ音楽の音源分離
- Authors: Luca A. Lanzendörfer, Constantin Pinkl, Florian Grötschla,
- Abstract要約: 本研究では,カペラ音楽におけるマルチシンガー分離の課題について検討する。
本稿では,SepReformerの適応であるSepACapを紹介する。
JaCappellaデータセット上での実験により,本手法は,フルアンサンブルとサブセットのシンガー分離シナリオにおいて,最先端のパフォーマンスを実現することを示す。
- 参考スコア(独自算出の注目度): 11.877895671677964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we study the task of multi-singer separation in a cappella music, where the number of active singers varies across mixtures. To address this, we use a power set-based data augmentation strategy that expands limited multi-singer datasets into exponentially more training samples. To separate singers, we introduce SepACap, an adaptation of SepReformer, a state-of-the-art speaker separation model architecture. We adapt the model with periodic activations and a composite loss function that remains effective when stems are silent, enabling robust detection and separation. Experiments on the JaCappella dataset demonstrate that our approach achieves state-of-the-art performance in both full-ensemble and subset singer separation scenarios, outperforming spectrogram-based baselines while generalizing to realistic mixtures with varying numbers of singers.
- Abstract(参考訳): 本研究では,カペラ音楽におけるマルチシンガー分離の課題について検討する。
これを解決するために、限られたマルチシンガーデータセットを指数関数的により多くのトレーニングサンプルに拡張する、パワーセットベースのデータ拡張戦略を使用します。
本稿では,SepReformerの適応であるSepACapを紹介する。
本研究では,周期的アクティベーションと,幹が静かである場合に有効である複合損失関数を用いてモデルを適応し,ロバストな検出と分離を可能にする。
JaCappellaデータセットを用いた実験により,本手法は,様々な数の歌手が混在する現実的な混合に一般化しつつ,スペクトルベースのベースラインを上回りながら,全アンサンブルとサブセットの歌手分離シナリオにおいて,最先端のパフォーマンスを達成することを示す。
関連論文リスト
- High-Quality Sound Separation Across Diverse Categories via Visually-Guided Generative Modeling [65.02357548201188]
DAVIS(Diffusion-based Audio-VIsual separation framework)を提案する。
本フレームワークは、混合音声入力と関連する視覚情報に基づいて、ノイズ分布から直接、所望の分離音スペクトルを合成することによって機能する。
論文 参考訳(メタデータ) (2025-09-26T08:46:00Z) - Scaling Self-Supervised Representation Learning for Symbolic Piano Performance [52.661197827466886]
本研究では,多量のシンボリック・ピアノ転写を訓練した自己回帰型トランスフォーマモデルの能力について検討した。
比較的小型で高品質なサブセットをファインチューンモデルに使い、音楽の継続を生成、シンボリックな分類タスクを実行し、汎用的なコントラストMIDI埋め込みを生成する。
論文 参考訳(メタデータ) (2025-06-30T14:00:14Z) - Unleashing the Power of Natural Audio Featuring Multiple Sound Sources [54.38251699625379]
ユニバーサルサウンド分離は、混合音声から異なるイベントに対応するクリーンなオーディオトラックを抽出することを目的としている。
複雑な混合音声を複数の独立したトラックに分解するために,データエンジンを利用するフレームワークであるClearSepを提案する。
実験では、ClearSepは複数の音分離タスクで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-04-24T17:58:21Z) - Automatic Estimation of Singing Voice Musical Dynamics [9.343063100314687]
本稿では,データセットキュレーションの方法論を提案する。
我々は163のスコアファイルと一致して509の楽曲のダイナミックスを歌声の演奏に注釈付けしたデータセットをコンパイルする。
我々は、様々なウィンドウサイズを持つCNNモデルを訓練し、音楽力学を推定するの有効性を評価する。
実験の結果,バークスケールによる音声力学予測は対数メル特徴よりも優れていた。
論文 参考訳(メタデータ) (2024-10-27T18:15:18Z) - High-Quality Visually-Guided Sound Separation from Diverse Categories [56.92841782969847]
DAVISは拡散に基づくオーディオ視覚分離フレームワークである。
分離された音をガウス雑音から直接合成し、オーディオミックスと視覚情報の両方に条件付けする。
AVEおよびMUSICデータセット上で,DAVISを既存の最先端の識別的音声視覚分離法と比較した。
論文 参考訳(メタデータ) (2023-07-31T19:41:49Z) - MedleyVox: An Evaluation Dataset for Multiple Singing Voices Separation [10.456845656569444]
複数の歌声をそれぞれの声に分離することは、音源分離研究においてまれに研究される。
複数の歌声分離のための評価データセットであるMedleyVoxを紹介する。
そこで本研究では,複数の歌唱ミックスを構築するためのストラテジーについて述べる。
論文 参考訳(メタデータ) (2022-11-14T12:27:35Z) - Karaoker: Alignment-free singing voice synthesis with speech training
data [3.9795908407245055]
カラオカー (Karaoker) は、タコトロンをベースとした多話者モデルである。
このモデルは、連続データ上に1つの深い畳み込みエンコーダで共同条件付けされている。
特徴再構成,分類,話者識別タスクによるテキスト音声訓練の目的を拡大する。
論文 参考訳(メタデータ) (2022-04-08T15:33:59Z) - Improved singing voice separation with chromagram-based pitch-aware
remixing [26.299721372221736]
高いピッチアライメントを持つ音楽セグメントを混合したクロマグラムベースのピッチ認識リミックスを提案する。
我々は、ピッチ認識リミックスによるトレーニングモデルにより、テスト信号-歪み比(SDR)が大幅に改善されることを実証した。
論文 参考訳(メタデータ) (2022-03-28T20:55:54Z) - SeCo: Separating Unknown Musical Visual Sounds with Consistency Guidance [88.0355290619761]
この作品は未知の楽器の分離に焦点を当てている。
本稿では,未知のカテゴリを分離できるセコ(SeCo)フレームワークを提案する。
本手法は,新たな楽曲カテゴリに適応する能力を示し,基本手法を顕著なマージンで上回る性能を示す。
論文 参考訳(メタデータ) (2022-03-25T09:42:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。