論文の概要: Judging with Confidence: Calibrating Autoraters to Preference Distributions
- arxiv url: http://arxiv.org/abs/2510.00263v1
- Date: Tue, 30 Sep 2025 20:36:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.250681
- Title: Judging with Confidence: Calibrating Autoraters to Preference Distributions
- Title(参考訳): 信頼性で判断する - オートレーダを優先度分布にキャリブレーションする
- Authors: Zhuohang Li, Xiaowei Li, Chengyu Huang, Guowang Li, Katayoon Goshvadi, Bo Dai, Dale Schuurmans, Paul Zhou, Hamid Palangi, Yiwen Song, Palash Goyal, Murat Kantarcioglu, Bradley A. Malin, Yuan Xue,
- Abstract要約: 信頼性の高いオートラッターは、対象の個体群によって定義される嗜好の完全な分布をモデル化することを学ぶ必要がある、と我々は主張する。
異なるデータ条件に合わせた2つの学習方法を提案する。
この結果から, 分布マッチング目的の微調整オートレーダは, 目的の好み分布に整合した有言確率予測を導出することがわかった。
- 参考スコア(独自算出の注目度): 56.17041629492863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The alignment of large language models (LLMs) with human values increasingly relies on using other LLMs as automated judges, or ``autoraters''. However, their reliability is limited by a foundational issue: they are trained on discrete preference labels, forcing a single ground truth onto tasks that are often subjective, ambiguous, or nuanced. We argue that a reliable autorater must learn to model the full distribution of preferences defined by a target population. In this paper, we propose a general framework for calibrating probabilistic autoraters to any given preference distribution. We formalize the problem and present two learning methods tailored to different data conditions: 1) a direct supervised fine-tuning for dense, probabilistic labels, and 2) a reinforcement learning approach for sparse, binary labels. Our empirical results show that finetuning autoraters with a distribution-matching objective leads to verbalized probability predictions that are better aligned with the target preference distribution, with improved calibration and significantly lower positional bias, all while preserving performance on objective tasks.
- Abstract(参考訳): 大きな言語モデル(LLM)と人間の値のアライメントは、自動化された判断として他のLLMを使用すること、すなわち 'autoraters' に依存している。
しかし、それらの信頼性は基本的な問題によって制限されている:それらは個別の選好ラベルに基づいて訓練され、しばしば主観的、曖昧、ニュアンスのあるタスクに1つの根拠の真実を強制する。
信頼性の高いオートラッターは、対象の個体群によって定義される嗜好の完全な分布をモデル化することを学ぶ必要がある、と我々は主張する。
本稿では,確率的オートレーダを任意の好み分布に調整するための一般的な枠組みを提案する。
問題を形式化し、異なるデータ条件に適した2つの学習方法を示す。
1)密で確率的なラベルのための直接監督された微調整、及び
2)スパース・バイナリ・ラベルのための強化学習手法。
実験結果から,分布マッチング対象の微調整オートレーダは,目標の嗜好分布に整合し,キャリブレーションが向上し,位置偏差が著しく低い言語的確率予測を導出することが示された。
関連論文リスト
- On Optimal Steering to Achieve Exact Fairness [29.589891801235083]
経験的に、我々の合成と実世界の両方のデータセットにおける最適なステアリング技術は、実用性を低下させることなく公正性を向上する。
マルチクラス分類におけるバイアスを低減するために, LLM表現のアフィンステアリングを示す。
論文 参考訳(メタデータ) (2025-09-19T08:37:51Z) - SCOPE: Stochastic and Counterbiased Option Placement for Evaluating Large Language Models [0.27309692684728604]
大規模言語モデル(LLM)は、選択肢の位置やラベルに固有のバイアスを生かして、複数の選択タスクの膨らませたスコアを達成できる。
本研究では,データセットに依存しない方法で選択バイアスを計測・緩和するSCOPEを提案する。
論文 参考訳(メタデータ) (2025-07-24T08:28:17Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Probabilistic Test-Time Generalization by Variational Neighbor-Labeling [62.158807685159736]
本稿では、ドメインの一般化を試み、モデルが未確認のターゲットドメインにデプロイされる前に、ソースドメインにのみトレーニングされる。
ソーストレーニングされたモデルをテスト時にターゲットドメインに一般化するための、ターゲットサンプルの擬似ラベル化の確率。
より堅牢な擬似ラベルを生成するために、近隣のターゲットサンプルの情報を含む変分隣接ラベル。
論文 参考訳(メタデータ) (2023-07-08T18:58:08Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
カスケードは、推論コストをサンプル毎に適応的に変化させる古典的な戦略である。
deferralルールは、シーケンス内の次の分類子を呼び出すか、または予測を終了するかを決定する。
カスケードの構造に執着しているにもかかわらず、信頼に基づく推論は実際は極めてうまく機能することが多い。
論文 参考訳(メタデータ) (2023-07-06T04:13:57Z) - Calibrated Selective Classification [34.08454890436067]
そこで我々は,「不確か」な不確実性のある例を拒否する手法を提案する。
本稿では,選択的校正モデル学習のためのフレームワークを提案する。そこでは,任意のベースモデルの選択的校正誤差を改善するために,個別のセレクタネットワークを訓練する。
われわれは,複数画像分類と肺癌リスク評価におけるアプローチの実証的効果を実証した。
論文 参考訳(メタデータ) (2022-08-25T13:31:09Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。