論文の概要: Improving Virtual Contrast Enhancement using Longitudinal Data
- arxiv url: http://arxiv.org/abs/2510.00418v2
- Date: Thu, 02 Oct 2025 02:00:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 14:32:17.187715
- Title: Improving Virtual Contrast Enhancement using Longitudinal Data
- Title(参考訳): 経時的データを用いた仮想コントラスト改善
- Authors: Pierre Fayolle, Alexandre Bône, Noëlie Debs, Philippe Robert, Pascal Bourdon, Remy Guillevin, David Helbert,
- Abstract要約: ガドリニウム系造影剤(GBCA)はMRI(MRI)において病変の検出と特徴化を促進するために広く用いられている。
ガドリニウムの保持と脳や体組織への蓄積に関する懸念は、摂取量を減らす戦略の必要性を招いている。
フルコントラストT1強調MRI画像のコントラスト強調のためのディープラーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 34.7913333830492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gadolinium-based contrast agents (GBCAs) are widely used in magnetic resonance imaging (MRI) to enhance lesion detection and characterisation, particularly in the field of neuro-oncology. Nevertheless, concerns regarding gadolinium retention and accumulation in brain and body tissues, most notably for diseases that require close monitoring and frequent GBCA injection, have led to the need for strategies to reduce dosage. In this study, a deep learning framework is proposed for the virtual contrast enhancement of full-dose post-contrast T1-weighted MRI images from corresponding low-dose acquisitions. The contribution of the presented model is its utilisation of longitudinal information, which is achieved by incorporating a prior full-dose MRI examination from the same patient. A comparative evaluation against a non-longitudinal single session model demonstrated that the longitudinal approach significantly improves image quality across multiple reconstruction metrics. Furthermore, experiments with varying simulated contrast doses confirmed the robustness of the proposed method. These results emphasize the potential of integrating prior imaging history into deep learning-based virtual contrast enhancement pipelines to reduce GBCA usage without compromising diagnostic utility, thus paving the way for safer, more sustainable longitudinal monitoring in clinical MRI practice.
- Abstract(参考訳): ガドリニウム系造影剤(GBCA)は磁気共鳴イメージング(MRI)において、特に神経腫瘍学の分野で、病変の検出と特徴化を促進するために広く用いられている。
にもかかわらず、ガドリニウムの保持と脳や体組織への蓄積に関する懸念は、特に、綿密なモニタリングと頻繁なGBCA注入を必要とする疾患に対して、摂取量を減らす戦略の必要性を招いている。
本研究では, コントラスト後T1強調MRI画像の仮想コントラスト向上のためのディープラーニングフレームワークを提案する。
提案モデルの貢献は縦方向情報の利用であり、これは同一患者のMRI検査に先立って取り入れることによって達成される。
非縦断的単一セッションモデルとの比較評価により、縦断的アプローチは複数の再構成指標間で画像品質を著しく改善することを示した。
さらに, 異なる模擬コントラスト線量を用いた実験により, 提案手法のロバスト性が確認された。
これらの結果は、診断ユーティリティを損なうことなくGBCAの使用を減らすために、深層学習に基づく仮想コントラスト拡張パイプラインに事前撮像履歴を統合する可能性を強調し、臨床MRIの実践においてより安全で持続的な持続的モニタリングを可能にする。
関連論文リスト
- HepatoGEN: Generating Hepatobiliary Phase MRI with Perceptual and Adversarial Models [33.7054351451505]
肝胆道相(HBP)画像の初期コントラスト位相からの深層学習に基づく合成手法を提案する。
pGANの定量的評価は, 視力評価とブラインドドラジオロジカル・レビューの併用により, pGANが最高の定量的性能を示した。
対照的に、U-Netは、より少ないアーティファクトで一貫した肝拡張を発生させ、DDPMは、微細構造の詳細の保存が限られているため、性能が低下した。
論文 参考訳(メタデータ) (2025-04-25T15:01:09Z) - Simulating Dynamic Tumor Contrast Enhancement in Breast MRI using Conditional Generative Adversarial Networks [2.4634168876565177]
乳房MRIにおける仮想コントラスト強調法を提案し,従来のコントラストエージェントを用いたDCE-MRIの取得に代えて,有望な非侵襲的代替手段を提供する。
条件付き生成逆数ネットワークを用いて、複数の対応するDCE-MRIタイムポイントの合同生成シーケンスを含むDCE-MRI画像を予測する。
提案手法は,現実的で有用なDCE-MRIシークエンスを生成する上で有望な結果を示し,乳がんの診断と治療を改善するための仮想コントラスト増強の可能性を強調した。
論文 参考訳(メタデータ) (2024-09-27T16:08:52Z) - Synthesizing Late-Stage Contrast Enhancement in Breast MRI: A Comprehensive Pipeline Leveraging Temporal Contrast Enhancement Dynamics [0.3499870393443268]
本研究では,後期DCE-MRI画像の初期段階データから合成するためのパイプラインを提案する。
提案手法では, コントラストエージェントの時間的挙動を利用して生成モデルの訓練を指導する, 新たな損失関数である時間強度損失(TI-loss)を導入する。
アノテーション付き領域における拡張パターンを検証するContrast Agent Pattern Score(mathcalCP_s$)と、実際の拡張と生成された拡張の違いを測定するAverage difference in Enhancement(mathcalED$)の2つの指標が画像品質を評価するために提案されている。
論文 参考訳(メタデータ) (2024-09-03T04:31:49Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
これらの手法の主な課題は、コントラスト強調の正確な予測と現実的な画像の合成である。
コントラスト前の画像対とコントラスト後の画像対のサブトラクション画像に符号化されたコントラスト信号を利用することで、両課題に対処する。
各種スキャナー,フィールド強度,コントラストエージェントを用いた合成および実データに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-03-06T08:35:29Z) - Synthesis of Contrast-Enhanced Breast MRI Using Multi-b-Value DWI-based
Hierarchical Fusion Network with Attention Mechanism [15.453470023481932]
造影MRI(CE-MRI)は腫瘍と浸潤した健全な組織との鑑別に優れる。
CE-MRIを得るためにガドリニウムベースの造影剤(GBCA)を使用することは、ネフローゼ性全身線維症と関連し、脳内での生体蓄積を引き起こす可能性がある。
造影剤の使用を減らすため,拡散強調画像(DWI)が重要画像技術として出現している。
論文 参考訳(メタデータ) (2023-07-03T09:46:12Z) - Faithful Synthesis of Low-dose Contrast-enhanced Brain MRI Scans using
Noise-preserving Conditional GANs [102.47542231659521]
ガドリニウム系造影剤(GBCA)は様々な疾患の診断にMRIにおいて不可欠である。
GBCAは高価であり、副作用のある患者に蓄積される可能性がある。
診断値を維持しながらGBCAの投与量をどの程度削減できるかは不明確である。
論文 参考訳(メタデータ) (2023-06-26T13:19:37Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。