論文の概要: ZQBA: Zero Query Black-box Adversarial Attack
- arxiv url: http://arxiv.org/abs/2510.00769v1
- Date: Wed, 01 Oct 2025 11:00:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.525526
- Title: ZQBA: Zero Query Black-box Adversarial Attack
- Title(参考訳): ZQBA:ゼロクエリブラックボックス攻撃
- Authors: Joana C. Costa, Tiago Roxo, Hugo Proença, Pedro R. M. Inácio,
- Abstract要約: 我々は,Deep Neural Networks (DNN) の表現を利用して,他のネットワークを騙すZero Query Black-box Adversarial (ZQBA) 攻撃を提案する。
以上の結果から,ZQBA は様々なモデルと様々なデータセット間で,敵対的なサンプルを転送できることが示唆された。
- 参考スコア(独自算出の注目度): 4.986238427458674
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current black-box adversarial attacks either require multiple queries or diffusion models to produce adversarial samples that can impair the target model performance. However, these methods require training a surrogate loss or diffusion models to produce adversarial samples, which limits their applicability in real-world settings. Thus, we propose a Zero Query Black-box Adversarial (ZQBA) attack that exploits the representations of Deep Neural Networks (DNNs) to fool other networks. Instead of requiring thousands of queries to produce deceiving adversarial samples, we use the feature maps obtained from a DNN and add them to clean images to impair the classification of a target model. The results suggest that ZQBA can transfer the adversarial samples to different models and across various datasets, namely CIFAR and Tiny ImageNet. The experiments also show that ZQBA is more effective than state-of-the-art black-box attacks with a single query, while maintaining the imperceptibility of perturbations, evaluated both quantitatively (SSIM) and qualitatively, emphasizing the vulnerabilities of employing DNNs in real-world contexts. All the source code is available at https://github.com/Joana-Cabral/ZQBA.
- Abstract(参考訳): 現在のブラックボックスの敵攻撃は、ターゲットモデルのパフォーマンスを損なう可能性のある敵のサンプルを生成するために、複数のクエリや拡散モデルを必要とする。
しかしながら、これらの手法は、現実の環境での適用性を制限した敵対的なサンプルを生成するために、代理損失または拡散モデルを訓練する必要がある。
そこで我々は,Deep Neural Networks (DNN) の表現を利用して,他のネットワークを騙すZero Query Black-box Adversarial (ZQBA) 攻撃を提案する。
DNNから得られた特徴マップを使用して、数千のクエリを要求される代わりに、画像をクリーンにすることでターゲットモデルの分類を損なうことができる。
その結果、ZQBAは、さまざまなモデルや、CIFARやTiny ImageNetといったさまざまなデータセットに、敵対的なサンプルを転送可能であることが示唆された。
実験の結果、ZQBAは単一クエリによる最先端のブラックボックス攻撃よりも効果的であり、摂動の認識不能性を維持しつつ、定量的(SSIM)と定性的に評価し、実環境におけるDNNの使用の脆弱性を強調している。
すべてのソースコードはhttps://github.com/Joana-Cabral/ZQBAで入手できる。
関連論文リスト
- Breaking Free: How to Hack Safety Guardrails in Black-Box Diffusion Models! [52.0855711767075]
EvoSeedは、フォトリアリスティックな自然対向サンプルを生成するための進化戦略に基づくアルゴリズムフレームワークである。
我々は,CMA-ESを用いて初期種ベクトルの探索を最適化し,条件付き拡散モデルで処理すると,自然逆数サンプルをモデルで誤分類する。
実験の結果, 生成した対向画像は画像品質が高く, 安全分類器を通過させることで有害なコンテンツを生成する懸念が高まっていることがわかった。
論文 参考訳(メタデータ) (2024-02-07T09:39:29Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
ディープニューラルネットワークは、元の画像に近いサンプルを見つける敵の例に弱いが、モデルを誤分類させる可能性がある。
モデル中間層における隠れた特徴にランダムノイズを付加することにより,ブラックボックス攻撃に対する簡易かつ軽量な防御法を提案する。
本手法は,スコアベースと決定ベースの両方のブラックボックス攻撃に対するモデルのレジリエンスを効果的に向上させる。
論文 参考訳(メタデータ) (2023-10-01T03:53:23Z) - Microbial Genetic Algorithm-based Black-box Attack against Interpretable
Deep Learning Systems [16.13790238416691]
ホワイトボックス環境では、解釈可能なディープラーニングシステム(IDLS)が悪意のある操作に対して脆弱であることが示されている。
本稿では,IDLSに対するクエリ効率の高いScoreベースのブラックボックス攻撃QuScoreを提案する。
論文 参考訳(メタデータ) (2023-07-13T00:08:52Z) - General Adversarial Defense Against Black-box Attacks via Pixel Level
and Feature Level Distribution Alignments [75.58342268895564]
我々は,DGN(Deep Generative Networks)と新たなトレーニング機構を併用して,分散ギャップを解消する。
トレーニングされたDGNは、画素値の変換により、敵サンプルとターゲットDNNのクリーンな分布を整列する。
我々の戦略はブラックボックス攻撃に対するその独特な効果と汎用性を実証している。
論文 参考訳(メタデータ) (2022-12-11T01:51:31Z) - Towards Lightweight Black-Box Attacks against Deep Neural Networks [70.9865892636123]
ブラックボックス攻撃は、いくつかのテストサンプルしか利用できない実用的な攻撃を引き起こす可能性があると我々は主張する。
いくつかのサンプルが必要なので、これらの攻撃を軽量なブラックボックス攻撃と呼ぶ。
近似誤差を軽減するために,Error TransFormer (ETF) を提案する。
論文 参考訳(メタデータ) (2022-09-29T14:43:03Z) - Cross-Modal Transferable Adversarial Attacks from Images to Videos [82.0745476838865]
近年の研究では、一方のホワイトボックスモデルで手作りされた敵の例は、他のブラックボックスモデルを攻撃するために使用できることが示されている。
本稿では,イメージ・トゥ・ビデオ(I2V)攻撃と呼ばれる,シンプルだが効果的なクロスモーダル・アタック手法を提案する。
I2Vは、事前訓練された画像モデルの特徴と良質な例とのコサイン類似性を最小化して、対向フレームを生成する。
論文 参考訳(メタデータ) (2021-12-10T08:19:03Z) - Practical No-box Adversarial Attacks against DNNs [31.808770437120536]
我々は、攻撃者がモデル情報やトレーニングセットにアクセスしたり、モデルに問い合わせたりできない、ノンボックスの逆例を調査する。
非常に小さなデータセットでトレーニングを行うための3つのメカニズムを提案し、プロトタイプの再構築が最も効果的であることを示す。
提案手法は, システムの平均予測精度を15.40%に低下させ, 事前学習したArcfaceモデルから, 敵のサンプルを転送する攻撃と同等にする。
論文 参考訳(メタデータ) (2020-12-04T11:10:03Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
ニューラルプロセスに基づくブラックボックス対逆攻撃(NP-Attack)を提案する。
NP-Attackはブラックボックス設定でクエリ数を大幅に削減できる。
論文 参考訳(メタデータ) (2020-09-24T06:22:56Z) - Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer
Learning [60.784641458579124]
ホワイトボックスFGSM攻撃によるモデルロバスト性を効果的に向上することを示す。
また,移動学習モデルに対するブラックボックス攻撃手法を提案する。
ホワイトボックス攻撃とブラックボックス攻撃の双方の効果を系統的に評価するために,ソースモデルからターゲットモデルへの変換可能性の評価手法を提案する。
論文 参考訳(メタデータ) (2020-08-25T15:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。