論文の概要: Span-level Detection of AI-generated Scientific Text via Contrastive Learning and Structural Calibration
- arxiv url: http://arxiv.org/abs/2510.00890v1
- Date: Wed, 01 Oct 2025 13:35:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.587058
- Title: Span-level Detection of AI-generated Scientific Text via Contrastive Learning and Structural Calibration
- Title(参考訳): コントラスト学習と構造校正によるAI生成科学テキストのスパンレベル検出
- Authors: Zhen Yin, Shenghua Wang,
- Abstract要約: Sci-SpanDetはAI生成した学術テキストを検出するための構造認識フレームワークである。
セクション条件付きスタイリスティックモデリングとマルチレベルコントラスト学習を組み合わせることで、人間のニュアンスとAIの違いを捉える。
F1(AI)は80.17、AUROCは92.63、Span-F1は74.36である。
- 参考スコア(独自算出の注目度): 2.105564340986074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid adoption of large language models (LLMs) in scientific writing raises serious concerns regarding authorship integrity and the reliability of scholarly publications. Existing detection approaches mainly rely on document-level classification or surface-level statistical cues; however, they neglect fine-grained span localization, exhibit weak calibration, and often fail to generalize across disciplines and generators. To address these limitations, we present Sci-SpanDet, a structure-aware framework for detecting AI-generated scholarly texts. The proposed method combines section-conditioned stylistic modeling with multi-level contrastive learning to capture nuanced human-AI differences while mitigating topic dependence, thereby enhancing cross-domain robustness. In addition, it integrates BIO-CRF sequence labeling with pointer-based boundary decoding and confidence calibration to enable precise span-level detection and reliable probability estimates. Extensive experiments on a newly constructed cross-disciplinary dataset of 100,000 annotated samples generated by multiple LLM families (GPT, Qwen, DeepSeek, LLaMA) demonstrate that Sci-SpanDet achieves state-of-the-art performance, with F1(AI) of 80.17, AUROC of 92.63, and Span-F1 of 74.36. Furthermore, it shows strong resilience under adversarial rewriting and maintains balanced accuracy across IMRaD sections and diverse disciplines, substantially surpassing existing baselines. To ensure reproducibility and to foster further research on AI-generated text detection in scholarly documents, the curated dataset and source code will be publicly released upon publication.
- Abstract(参考訳): 学術論文における大規模言語モデル(LLM)の急速な採用は、著者の整合性と学術出版物の信頼性に関する深刻な懸念を提起する。
既存の検出手法は主に文書レベルの分類や表面レベルの統計手法に依存しているが、それらは微粒なスパンの局所化を無視し、校正が弱く、しばしば規律や発電機をまたいだ一般化に失敗する。
これらの制約に対処するため、AI生成学術テキストを検出する構造認識フレームワークであるSci-SpanDetを提案する。
提案手法は,マルチレベルコントラスト学習と分割条件付きスタイリスティックモデリングを組み合わせることで,トピック依存を緩和しつつ,ニュアンスな人間とAIの違いを捉え,ドメイン間の堅牢性を向上する。
さらに、BIO-CRFシークエンスラベリングとポインタベースの境界復号と信頼度校正を統合し、正確なスパンレベル検出と信頼性の高い確率推定を可能にする。
複数のLLMファミリー(GPT、Qwen、DeepSeek、LLaMA)によって生成された10,000の注釈付きサンプルからなる新たに構築されたクロスディシプリナデータセットに関する大規模な実験は、Sci-SpanDetが80.17のF1(AI)、92.63のAUROC、74.36のSpan-F1で最先端のパフォーマンスを達成することを示した。
さらに, IMRaD領域と多種多様な分野にまたがるバランスの取れた精度を維持し, 既存のベースラインをはるかに超える強いレジリエンスを示す。
再現性を確実にし、学術文書におけるAI生成テキスト検出のさらなる研究を促進するため、キュレートされたデータセットとソースコードは公開時に公開される。
関連論文リスト
- Diversity Boosts AI-Generated Text Detection [51.56484100374058]
DivEyeは、予備的な機能を使って、予測不可能がテキスト間でどのように変動するかをキャプチャする、新しいフレームワークである。
提案手法は、既存のゼロショット検出器を最大33.2%向上させ、微調整ベースラインとの競合性能を達成する。
論文 参考訳(メタデータ) (2025-09-23T10:21:22Z) - Fine-Grained Detection of AI-Generated Text Using Sentence-Level Segmentation [3.088244520495001]
人間とAI生成テキスト間の遷移を検出するための文レベルのシーケンスラベリングモデルの提案
我々のモデルは、ニューラルネットワーク(NN)と条件ランダムフィールド(CRF)を組み込んだ最先端の事前学習トランスフォーマーモデルを組み合わせる。
評価は、協力的な人間とAI生成されたテキストを含む2つの公開ベンチマークデータセットで実行される。
論文 参考訳(メタデータ) (2025-09-22T14:22:55Z) - DetectAnyLLM: Towards Generalizable and Robust Detection of Machine-Generated Text Across Domains and Models [60.713908578319256]
タスク指向の知識で検出器を最適化するために,DDL(Direct Discrepancy Learning)を提案する。
そこで本研究では,最新のMGTD性能を実現する統合検出フレームワークであるTectAnyLLMを紹介する。
MIRAGEは5つのテキストドメインにまたがる10のコーパスから人書きテキストをサンプリングし、17個の最先端のLLMを使用して再生成または修正する。
論文 参考訳(メタデータ) (2025-09-15T10:59:57Z) - HySemRAG: A Hybrid Semantic Retrieval-Augmented Generation Framework for Automated Literature Synthesis and Methodological Gap Analysis [55.2480439325792]
HySemRAGは、Extract, Transform, Load (ETL)パイプラインとRetrieval-Augmented Generation (RAG)を組み合わせたフレームワークである。
システムは、マルチ層アプローチを通じて既存のRAGアーキテクチャの制限に対処する。
論文 参考訳(メタデータ) (2025-08-01T20:30:42Z) - HACo-Det: A Study Towards Fine-Grained Machine-Generated Text Detection under Human-AI Coauthoring [14.887491317701997]
本稿では,人間-AI共著者によるMGT検出の可能性について検討する。
より微細な検出器は、数値AI比で、共認可されたテキスト検出への経路を舗装することができることを示唆する。
実験結果から, 平均F1スコア0.462において, 計量法は微粒度検出に苦慮していることがわかった。
論文 参考訳(メタデータ) (2025-06-03T14:52:44Z) - When AI Co-Scientists Fail: SPOT-a Benchmark for Automated Verification of Scientific Research [19.97666809905332]
大規模言語モデル(LLM)は、AIコサイシストと呼ばれる自動科学的発見のビジョンを加速させた。
大規模言語モデル(LLM)の最近の進歩は、しばしばAIコサイシストと呼ばれる自動科学的発見のビジョンを加速させた。
論文 参考訳(メタデータ) (2025-05-17T05:45:16Z) - Entropy-Guided Watermarking for LLMs: A Test-Time Framework for Robust and Traceable Text Generation [58.85645136534301]
サンプルテキストの既存の透かし方式は、テキスト品質の維持と各種攻撃に対する堅牢な検出とのトレードオフに直面していることが多い。
累積透かしエントロピー閾値を導入することにより,検出性とテキスト品質を両立させる新しい透かし方式を提案する。
論文 参考訳(メタデータ) (2025-04-16T14:16:38Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
大型言語モデル (LLM) は文法の修正、内容の拡張、文体の改良によって人間の書き方を変えてきた。
既存の検出方法は、主に単一機能分析とバイナリ分類に依存しているが、学術的文脈においてLLM生成テキストを効果的に識別することができないことが多い。
低レベル構造, 高レベル意味, 深層言語的特徴を統合することで, LLM生成テキストを検出する多レベルきめ細粒度検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-18T07:25:00Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z) - Text Recognition in Real Scenarios with a Few Labeled Samples [55.07859517380136]
Scene Text Recognition (STR) はコンピュータビジョン分野におけるホットな研究テーマである。
本稿では,数ショットの逆数列領域適応 (FASDA) を用いて構築シーケンスを適応する手法を提案する。
我々のアプローチは、ソースドメインとターゲットドメインの間の文字レベルの混乱を最大化することができる。
論文 参考訳(メタデータ) (2020-06-22T13:03:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。