論文の概要: Large Reasoning Models Learn Better Alignment from Flawed Thinking
- arxiv url: http://arxiv.org/abs/2510.00938v1
- Date: Wed, 01 Oct 2025 14:15:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.605
- Title: Large Reasoning Models Learn Better Alignment from Flawed Thinking
- Title(参考訳): 大規模推論モデルが欠陥思考からより良いアライメントを学習する
- Authors: ShengYun Peng, Eric Smith, Ivan Evtimov, Song Jiang, Pin-Yu Chen, Hongyuan Zhan, Haozhu Wang, Duen Horng Chau, Mahesh Pasupuleti, Jianfeng Chi,
- Abstract要約: 大規模推論モデル(LRM)は、最終的な答えを生成する前に構造化チェーン・オブ・シント(CoT)を生成することで「考える」。
本稿では,Regressed Learning (RL) 手法であるRECAPを提案する。
- 参考スコア(独自算出の注目度): 56.08883934423522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large reasoning models (LRMs) "think" by generating structured chain-of-thought (CoT) before producing a final answer, yet they still lack the ability to reason critically about safety alignment and are easily biased when a flawed premise is injected into their thought process. We propose RECAP (Robust Safety Alignment via Counter-Aligned Prefilling), a principled reinforcement learning (RL) method for post-training that explicitly teaches models to override flawed reasoning trajectories and reroute to safe and helpful responses. RECAP trains on a mixture of synthetically generated counter-aligned CoT prefills and standard prompts, requires no additional training cost or modifications beyond vanilla reinforcement learning from human feedback (RLHF), and substantially improves safety and jailbreak robustness, reduces overrefusal, and preserves core reasoning capability -- all while maintaining inference token budget. Extensive analysis shows that RECAP-trained models engage in self-reflection more frequently and remain robust under adaptive attacks, preserving safety even after repeated attempts to override their reasoning.
- Abstract(参考訳): 大規模な推論モデル(LRMs)は、最終的な答えを生成する前に構造化連鎖(CoT)を生成することで「考える」が、それでも安全アライメントについて批判的に考える能力は欠如しており、欠陥のある前提が思考プロセスに注入されると容易にバイアスを受ける。
本稿では,RECAP(Robust Safety Alignment via Counter-Aligned Prefilling, RL)手法を提案する。
人工的に生成されたCoTプリフィルと標準プロンプトを併用したRECAP列車は、人間のフィードバック(RLHF)からのバニラ強化学習以外の追加の訓練コストや修正を必要とせず、安全性と脱獄の堅牢性を大幅に改善し、過度な拒絶を低減し、中核的な推論能力を維持する。
広範囲な分析の結果,RECAP訓練モデルでは自己回帰が頻繁に行われ,アダプティブアタックの下では頑健であり,推論を繰り返す試みの後にも安全性が保たれることがわかった。
関連論文リスト
- AdvChain: Adversarial Chain-of-Thought Tuning for Robust Safety Alignment of Large Reasoning Models [62.70575022567081]
本稿では,逆CoTチューニングによる動的自己補正をモデルに教えるアライメントパラダイムであるAdvChainを提案する。
私たちの仕事は、より堅牢で信頼性の高い推論モデルを構築するための新しい方向性を確立します。
論文 参考訳(メタデータ) (2025-09-29T04:27:23Z) - Inducing Faithfulness in Structured Reasoning via Counterfactual Sensitivity [6.908972852063454]
大規模言語モデルは、欠陥や無関係な推論トレースに依存しながら、正しい答えを生成することが多い。
本稿では,新しい学習目標であるtextbfCounterfactual Sensitivity Regularization (CSR)を紹介する。
CSRは、標準的な微調整とプロセスの監督に対する忠実度を最大70パーセント向上させる。
論文 参考訳(メタデータ) (2025-09-01T15:18:46Z) - Post-Training Large Language Models via Reinforcement Learning from Self-Feedback [3.73824942136665]
大規模言語モデル(LLM)は、しばしば可算だが校正が不十分な回答を生成する。
本稿では,自己フィードバックによる強化学習(RLSF)について紹介する。
論文 参考訳(メタデータ) (2025-07-29T15:46:26Z) - Is Reasoning All You Need? Probing Bias in the Age of Reasoning Language Models [0.0]
RLM(Reasoning Language Models)は、複雑な多段階推論タスクを実行する能力によって注目を集めている。
これらの能力は信頼性の向上を約束するが、社会的バイアスに対する堅牢性への影響はまだ不明だ。
我々は, CLEAR-Bias ベンチマークを用いて, RLM のバイアス誘発に対する対角的ロバスト性について検討する。
論文 参考訳(メタデータ) (2025-07-03T17:01:53Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
大規模言語モデル(LLM)の既存のトレーニング時間安全アライメント技術は、ジェイルブレイク攻撃に対して脆弱なままである。
本研究では,DPOの目的を2つの構成要素にまとめる安全アライメントの改善について提案する。(1) 安全でない世代が部分的に発生しても拒否を促す頑健な拒絶訓練,(2) 有害な知識の未学習。
論文 参考訳(メタデータ) (2025-03-05T18:01:05Z) - Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking [54.10710423370126]
本稿では,大規模言語モデルの生成プロセスに安全性を考慮した推論機構を統合する訓練パラダイムであるReasoning-to-Defend(R2D)を提案する。
CPOは、与えられた対話の安全性に対するモデルの認識を高める。
実験によると、R2Dは様々な攻撃を効果的に軽減し、元の性能を維持しながら全体の安全性を向上させる。
論文 参考訳(メタデータ) (2025-02-18T15:48:46Z) - Enhancing Model Defense Against Jailbreaks with Proactive Safety Reasoning [21.423429565221383]
大規模言語モデル(LLM)は幅広いアプリケーションにとって不可欠だが、ジェイルブレイクの脅威を受けやすい。
有害な入力を積極的に評価するために,LSMの高機能化を利用した新しい防衛戦略であるセーフティ・チェーン・オブ・サート(SCoT)を提案する。
論文 参考訳(メタデータ) (2025-01-31T14:45:23Z) - Deliberative Alignment: Reasoning Enables Safer Language Models [64.60765108418062]
モデルセーフティ仕様を教える新しいパラダイムであるDeliberative Alignmentを紹介します。
このアプローチを使ってOpenAIのoシリーズモデルを整列させ、人書きのチェーンや回答を必要とせず、OpenAIの安全ポリシーに極めて正確な順守を実現しました。
論文 参考訳(メタデータ) (2024-12-20T21:00:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。