論文の概要: Augmenting LLMs for General Time Series Understanding and Prediction
- arxiv url: http://arxiv.org/abs/2510.01111v1
- Date: Wed, 01 Oct 2025 16:54:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.67744
- Title: Augmenting LLMs for General Time Series Understanding and Prediction
- Title(参考訳): 汎用時系列理解・予測のためのLLMの拡張
- Authors: Felix Parker, Nimeesha Chan, Chi Zhang, Kimia Ghobadi,
- Abstract要約: 時系列データは、医療、金融、環境科学を含む多くの重要な領域における意思決定に不可欠である。
TsLLM(Time Series-augmented LLM)を200万回以上のインターリーブされた時系列とテキストサンプルの大規模なコーパスでトレーニングする。
このトレーニングにより、TsLLMは言語理解と新たに獲得した時間的推論機能の両方を活用することができる。
- 参考スコア(独自算出の注目度): 2.426309874608745
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Time series data is fundamental to decision-making in many crucial domains including healthcare, finance, and environmental science. However, analyzing this data often requires incorporating unstructured contextual information, answering domain-specific questions, and generating natural language explanations -- capabilities that traditional time series models lack due to their inability to process text. While Large Language Models (LLMs) excel at contextual reasoning and knowledge integration, they struggle with numerical time series due to inefficient text-based representations and limited exposure to temporal data during pretraining. We address this gap by augmenting an LLM with specialized time series perception through a patch-based encoder-decoder architecture. We train this Time Series-augmented LLM (TsLLM) on a large corpus of over 2 million interleaved time series and text examples spanning diverse analysis tasks: forecasting with contextual information, time series question-answering, pattern explanation, classification with natural language outputs, and report generation. This training enables TsLLM to leverage both its language understanding and newly acquired temporal reasoning capabilities. While not designed to surpass specialized models on traditional benchmarks, TsLLM demonstrates strong performance on tasks requiring the integration of time series analysis with natural language -- capabilities that existing approaches cannot provide. Our work establishes a new paradigm for time series analysis that bridges numerical computation and natural language understanding, democratizing access to sophisticated temporal reasoning through natural language interaction.
- Abstract(参考訳): 時系列データは、医療、金融、環境科学を含む多くの重要な領域における意思決定に不可欠である。
しかし、このデータを分析するには、構造化されていないコンテキスト情報を導入し、ドメイン固有の質問に答え、自然言語の説明を生成する必要がある。
LLM(Large Language Models)は文脈推論や知識統合に優れるが、非効率なテキストベース表現と事前学習時の時間データへの露出が制限されるため、数値時系列に苦戦する。
我々は、パッチベースのエンコーダ・デコーダアーキテクチャを用いて、特殊な時系列認識でLLMを拡張することで、このギャップに対処する。
我々は,この時系列拡張LDM (TsLLM) を,文脈情報を用いた予測,時系列質問回答,パターン説明,自然言語出力による分類,レポート生成など,多種多様な分析タスクにまたがる200万件以上のインターリーブされた時系列とテキストの例からなる大規模コーパスで訓練する。
このトレーニングにより、TsLLMは言語理解と新たに獲得した時間的推論機能の両方を活用することができる。
TsLLMは従来のベンチマークで特別なモデルを上回るように設計されていないが、既存のアプローチでは提供できないような、時系列分析と自然言語の統合を必要とするタスクにおいて、強力なパフォーマンスを示している。
本研究は,数値計算と自然言語理解を橋渡しする時系列解析のための新しいパラダイムを確立し,自然言語の相互作用を通じて高度な時間的推論へのアクセスを民主化する。
関連論文リスト
- Chat-TS: Enhancing Multi-Modal Reasoning Over Time-Series and Natural Language Data [22.274663165215237]
時系列分析は、医療、金融、交通、エネルギーなど幅広い分野において重要である。
現在の時系列モデルは、時系列とテキストコンテンツの両方を含む推論を行う能力に制限がある。
Chat-TSは時系列トークンをLLMの語彙に統合し、両方のモダリティに対する推論能力を高める。
論文 参考訳(メタデータ) (2025-03-13T21:05:11Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) は、金融計画や健康モニタリングなど、多くの現実世界のドメインにおいて重要である。
既存のLarge Language Models (LLM) は通常、時系列データ固有の特性を無視するため、非最適に実行する。
時系列データから基本的なtextitPatterns と有意義な textitSemantics を学習し,TLF のための LLM-PS を提案する。
論文 参考訳(メタデータ) (2025-03-12T11:45:11Z) - TempoGPT: Enhancing Time Series Reasoning via Quantizing Embedding [13.996105878417204]
本稿では,マルチモーダル時系列データ構築手法とマルチモーダル時系列言語モデル(TLM, TempoGPT)を提案する。
ホワイトボックスシステム内の変数-システム関係を解析することにより,複雑な推論タスクのためのマルチモーダルデータを構築する。
広範な実験により、TempoGPTは時間的情報を正確に知覚し、結論を論理的に推論し、構築された複雑な時系列推論タスクにおける最先端の処理を達成することが示されている。
論文 参考訳(メタデータ) (2025-01-13T13:47:05Z) - Empowering Time Series Analysis with Large Language Models: A Survey [24.202539098675953]
本稿では,大規模言語モデルを用いた時系列解析手法の体系的概要について述べる。
具体的には、まず、時系列の文脈で言語モデルを適用する際の課題とモチベーションについて述べる。
次に、既存のメソッドを異なるグループ(ダイレクトクエリ、トークン化、プロンプトデザイン、ファインチューン、モデル統合)に分類し、各グループにおける主要なアイデアを強調します。
論文 参考訳(メタデータ) (2024-02-05T16:46:35Z) - Position: What Can Large Language Models Tell Us about Time Series Analysis [69.70906014827547]
現在の大規模言語モデル(LLM)は時系列解析に革命をもたらす可能性があると我々は主張する。
このような進歩は、時系列のモダリティスイッチングや質問応答など、幅広い可能性を解き放つ可能性がある。
論文 参考訳(メタデータ) (2024-02-05T04:17:49Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。