論文の概要: OntoLogX: Ontology-Guided Knowledge Graph Extraction from Cybersecurity Logs with Large Language Models
- arxiv url: http://arxiv.org/abs/2510.01409v1
- Date: Wed, 01 Oct 2025 19:46:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.847792
- Title: OntoLogX: Ontology-Guided Knowledge Graph Extraction from Cybersecurity Logs with Large Language Models
- Title(参考訳): OntoLogX: 大規模言語モデルを用いたサイバーセキュリティログからのオントロジーガイド付き知識グラフ抽出
- Authors: Luca Cotti, Idilio Drago, Anisa Rula, Devis Bianchini, Federico Cerutti,
- Abstract要約: システムログはサイバー脅威インテリジェンス(CTI)の貴重な情報源である
しかし、それらのユーティリティは、構造の欠如、セマンティックな一貫性の欠如、デバイスやセッション間の断片化によって制限されることが多い。
OntoLogXは生ログをオントロジー基底知識グラフ(KG)に変換する
システムはKGをセッションに集約し、MITRE ATT&CKの戦術を予測する。
- 参考スコア(独自算出の注目度): 3.4435169157853465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: System logs represent a valuable source of Cyber Threat Intelligence (CTI), capturing attacker behaviors, exploited vulnerabilities, and traces of malicious activity. Yet their utility is often limited by lack of structure, semantic inconsistency, and fragmentation across devices and sessions. Extracting actionable CTI from logs therefore requires approaches that can reconcile noisy, heterogeneous data into coherent and interoperable representations. We introduce OntoLogX, an autonomous Artificial Intelligence (AI) agent that leverages Large Language Models (LLMs) to transform raw logs into ontology-grounded Knowledge Graphs (KGs). OntoLogX integrates a lightweight log ontology with Retrieval Augmented Generation (RAG) and iterative correction steps, ensuring that generated KGs are syntactically and semantically valid. Beyond event-level analysis, the system aggregates KGs into sessions and employs a LLM to predict MITRE ATT&CK tactics, linking low-level log evidence to higher-level adversarial objectives. We evaluate OntoLogX on both logs from a public benchmark and a real-world honeypot dataset, demonstrating robust KG generation across multiple KGs backends and accurate mapping of adversarial activity to ATT&CK tactics. Results highlight the benefits of retrieval and correction for precision and recall, the effectiveness of code-oriented models in structured log analysis, and the value of ontology-grounded representations for actionable CTI extraction.
- Abstract(参考訳): システムログはCTI(Cyber Threat Intelligence)の貴重な情報源であり、攻撃者の振る舞いを捉え、脆弱性を悪用し、悪意のある活動の痕跡を追跡できる。
しかし、それらのユーティリティは、構造の欠如、セマンティックな一貫性の欠如、デバイスやセッション間の断片化によって制限されることが多い。
したがって、ログから実行可能なCTIを抽出するには、ノイズの多い異種データをコヒーレントかつ相互運用可能な表現に変換するアプローチが必要である。
我々は,大規模言語モデル(LLM)を活用して生ログをオントロジー基底知識グラフ(KG)に変換する,自律人工知能(AI)エージェントであるOntoLogXを紹介する。
OntoLogXは軽量なログオントロジーとRAG(Retrieval Augmented Generation)と反復的な修正ステップを統合し、生成したKGが構文的に、セマンティックに有効であることを保証する。
イベントレベルの分析以外にも、このシステムはKGをセッションに集約し、LLMを使用してMITRE ATT&CKの戦術を予測する。
我々は,複数のKGバックエンドにまたがる堅牢なKG生成と,ATT&CK戦術に対する敵活動の正確なマッピングを実証し,公開ベンチマークと実世界のハニーポットデータセットの両方からOntoLogXを評価する。
その結果、精度とリコールのための検索と修正の利点、構造化ログ解析におけるコード指向モデルの有効性、および実行可能なCTI抽出のためのオントロジー基底表現の値が明らかになった。
関連論文リスト
- Enrich-on-Graph: Query-Graph Alignment for Complex Reasoning with LLM Enriching [61.824094419641575]
大言語モデル(LLM)は知識グラフ質問応答(KGQA)のような知識集約的なシナリオにおける幻覚と事実的誤りに苦しむ
これは、構造化知識グラフ(KG)と非構造化クエリのセマンティックギャップによるもので、その焦点や構造に固有の違いが原因である。
既存の手法は通常、バニラKGの資源集約的で非スケーリング可能な推論を用いるが、このギャップを見落としている。
我々は、LLMの事前知識を活用してKGを充実させる柔軟なフレームワークEnrich-on-Graph(EoG)を提案し、グラフとクエリ間のセマンティックギャップを埋める。
論文 参考訳(メタデータ) (2025-09-25T06:48:52Z) - GRIL: Knowledge Graph Retrieval-Integrated Learning with Large Language Models [59.72897499248909]
本稿では,Large Language Models (LLM) を用いたエンドツーエンド学習のための新しいグラフ検索手法を提案する。
抽出したサブグラフでは, 構造的知識と意味的特徴をそれぞれ軟式トークンと言語化グラフで符号化し, LLMに注入する。
提案手法は、複雑な推論タスクに対する結合グラフ-LLM最適化の強みを検証し、最先端の性能を一貫して達成する。
論文 参考訳(メタデータ) (2025-09-20T02:38:00Z) - Enabling Transparent Cyber Threat Intelligence Combining Large Language Models and Domain Ontologies [3.4423725226938426]
ログからの情報抽出の精度と説明性を向上するAIエージェントを構築するための新しい手法を提案する。
本手法の設計は,ハニーポットデータに関連する解析的要件によって動機付けられている。
その結果,従来のプロンプトのみの手法に比べて,情報抽出の精度が高いことがわかった。
論文 参考訳(メタデータ) (2025-08-26T23:17:33Z) - Leveraging Knowledge Graphs and LLM Reasoning to Identify Operational Bottlenecks for Warehouse Planning Assistance [1.2749527861829046]
我々のフレームワークは知識グラフ(KG)とLarge Language Model(LLM)ベースのエージェントを統合している。
生のDESデータを意味的にリッチなKGに変換し、シミュレーションイベントとエンティティの関係をキャプチャする。
LLMベースのエージェントは反復推論を使用し、相互依存的なサブクエストを生成する。各サブクエストに対して、KGインタラクションのためのCypherクエリを生成し、情報を抽出し、エラーを修正する。
論文 参考訳(メタデータ) (2025-07-23T07:18:55Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - Leveraging LLM for Automated Ontology Extraction and Knowledge Graph Generation [3.2513035377783717]
OntoKGenは、オントロジー抽出と知識グラフ生成のための真のパイプラインである。
OntoKGenは、Neo4jのようなスキーマレスで非リレーショナルなデータベースへのシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2024-11-30T23:11:44Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLADは、システムログの異常を検出するように設計されたグラフベースのログ異常検出フレームワークである。
システムログの異常を検出するために設計されたグラフベースのログ異常検出フレームワークであるGLADを紹介する。
論文 参考訳(メタデータ) (2023-09-12T04:21:30Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Log2NS: Enhancing Deep Learning Based Analysis of Logs With Formal to
Prevent Survivorship Bias [0.37943450391498496]
本稿では,機械学習(ML)による観測データに対する確率的解析と,基礎となる形式モデルに基づく記号的推論から導出される確実性を組み合わせたフレームワークであるlog to Neuro-symbolic (Log2NS)を紹介する。
Log2NSは、静的ログと相関エンジンからポジティブなインスタンスを問い合わせる機能と、ネガティブなインスタンスと目に見えないインスタンスの正式な推論を提供する。
論文 参考訳(メタデータ) (2021-05-29T00:01:08Z) - Self-Supervised Log Parsing [59.04636530383049]
大規模ソフトウェアシステムは、大量の半構造化ログレコードを生成する。
既存のアプローチは、ログ特化や手動ルール抽出に依存している。
本稿では,自己教師付き学習モデルを用いて解析タスクをマスク言語モデリングとして定式化するNuLogを提案する。
論文 参考訳(メタデータ) (2020-03-17T19:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。