論文の概要: Large-Scale Bayesian Causal Discovery with Interventional Data
- arxiv url: http://arxiv.org/abs/2510.01562v1
- Date: Thu, 02 Oct 2025 01:16:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.9348
- Title: Large-Scale Bayesian Causal Discovery with Interventional Data
- Title(参考訳): インターベンショナルデータを用いた大規模ベイズ因果発見
- Authors: Seong Woo Han, Daniel Duy Vo, Brielin C. Brown,
- Abstract要約: 有向非巡回グラフ(DAG)の形で変数の集合間の因果関係を推定することは重要であるが、非常に難しい問題である。
介入データを用いた因果発見のための実証的ベイズ的枠組みであるインターベンショナルベイズ的因果発見(IBCD)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inferring the causal relationships among a set of variables in the form of a directed acyclic graph (DAG) is an important but notoriously challenging problem. Recently, advancements in high-throughput genomic perturbation screens have inspired development of methods that leverage interventional data to improve model identification. However, existing methods still suffer poor performance on large-scale tasks and fail to quantify uncertainty. Here, we propose Interventional Bayesian Causal Discovery (IBCD), an empirical Bayesian framework for causal discovery with interventional data. Our approach models the likelihood of the matrix of total causal effects, which can be approximated by a matrix normal distribution, rather than the full data matrix. We place a spike-and-slab horseshoe prior on the edges and separately learn data-driven weights for scale-free and Erd\H{o}s-R\'enyi structures from observational data, treating each edge as a latent variable to enable uncertainty-aware inference. Through extensive simulation, we show that IBCD achieves superior structure recovery compared to existing baselines. We apply IBCD to CRISPR perturbation (Perturb-seq) data on 521 genes, demonstrating that edge posterior inclusion probabilities enable identification of robust graph structures.
- Abstract(参考訳): 有向非巡回グラフ(DAG)の形で変数の集合間の因果関係を推定することは重要な問題であるが、非常に難しい。
近年、高スループットゲノム摂動スクリーンの進歩は、介入データを利用したモデル識別を改善する手法の開発にインスピレーションを与えている。
しかし、既存の手法は依然として大規模タスクでは性能が悪く、不確実性を定量化できない。
本稿では,介入データを用いた因果発見のための実証的ベイズ的枠組みであるInterventional Bayesian Causal Discovery (IBCD)を提案する。
本手法は,完全データ行列ではなく,行列正規分布によって近似できる全因果効果の行列の確率をモデル化する。
我々は,各エッジを潜伏変数として扱い,不確実性を考慮した推論を可能にするため,エッジにスパイク・アンド・スラブ・ホースを配置し,スケールフリーとエルド・H{o}s-R\enyi構造を別々に学習する。
IBCDは既存のベースラインに比べて優れた構造回復を達成できることを示す。
IBCDを521遺伝子上のCRISPR摂動(Perturb-seq)データに適用し、エッジ後部包含確率が堅牢なグラフ構造の同定を可能にすることを示す。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Large-Scale Targeted Cause Discovery via Learning from Simulated Data [66.51307552703685]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータに基づいて教師あり学習を用いてニューラルネットワークを訓練し、因果関係を推定する。
大規模遺伝子制御ネットワークにおける因果関係の同定に優れた性能を示す実験結果が得られた。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Learning Latent Structural Causal Models [31.686049664958457]
機械学習タスクでは、画像ピクセルや高次元ベクトルのような低レベルのデータを扱うことが多い。
本稿では,潜在構造因果モデルの因果変数,構造,パラメータについて共同推論を行う,抽出可能な近似推定手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T20:09:44Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
ゲノミクスのような特定の環境では、不均一な研究条件からのデータがあり、研究変数のサブセットのみに関連するソフトな(部分的な)介入がある。
観察データと介入データとの混合に対する介入BGeスコアを定義し,介入の目的と効果が不明である可能性がある。
論文 参考訳(メタデータ) (2022-05-05T12:32:08Z) - BCDAG: An R package for Bayesian structure and Causal learning of
Gaussian DAGs [77.34726150561087]
観測データから因果関係の発見と因果関係を推定するためのRパッケージを提案する。
我々の実装は、観測回数とともに効率的にスケールし、DAGが十分にスパースであるたびに、データセット内の変数の数を削減します。
次に、実際のデータセットとシミュレーションデータセットの両方で、主な機能とアルゴリズムを説明します。
論文 参考訳(メタデータ) (2022-01-28T09:30:32Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
構造方程式モデル(SEM)は、有向非巡回グラフ(DAG)を介して表される因果関係を推論する効果的な枠組みである。
近年の進歩により、観測データからDAGの有効最大点推定が可能となった。
線形ガウス SEM を特徴付ける DAG 上の分布を推定するための変分フレームワークである BCD Nets を提案する。
論文 参考訳(メタデータ) (2021-12-06T03:35:21Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。