論文の概要: Non-Asymptotic Analysis of Data Augmentation for Precision Matrix Estimation
- arxiv url: http://arxiv.org/abs/2510.02119v1
- Date: Thu, 02 Oct 2025 15:28:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:21.187264
- Title: Non-Asymptotic Analysis of Data Augmentation for Precision Matrix Estimation
- Title(参考訳): 高精度行列推定のためのデータ拡張の非漸近解析
- Authors: Lucas Morisset, Adrien Hardy, Alain Durmus,
- Abstract要約: 本研究では,個人性行列に比例した線形縮退推定器と,データ拡張から導出される推定器の2つのクラスに着目した。
両クラスの推定器について、推定器を導出し、その二次誤差に対して濃度境界を与える。
技術的には、我々の分析はランダム行列理論の道具に依存している。
- 参考スコア(独自算出の注目度): 12.919305286055616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of inverse covariance (also known as precision matrix) estimation in high-dimensional settings. Specifically, we focus on two classes of estimators: linear shrinkage estimators with a target proportional to the identity matrix, and estimators derived from data augmentation (DA). Here, DA refers to the common practice of enriching a dataset with artificial samples--typically generated via a generative model or through random transformations of the original data--prior to model fitting. For both classes of estimators, we derive estimators and provide concentration bounds for their quadratic error. This allows for both method comparison and hyperparameter tuning, such as selecting the optimal proportion of artificial samples. On the technical side, our analysis relies on tools from random matrix theory. We introduce a novel deterministic equivalent for generalized resolvent matrices, accommodating dependent samples with specific structure. We support our theoretical results with numerical experiments.
- Abstract(参考訳): 本稿では,高次元設定における逆共分散(精度行列)推定の問題に対処する。
具体的には、同一性行列に比例した線形縮退推定器と、データ拡張(DA)から導かれる推定器の2つのクラスに焦点を当てる。
ここでDAは、データセットを人工的なサンプル(典型的には、生成モデルまたは元のデータのランダムな変換によって生成される)で豊かにする一般的なプラクティスである。
両クラスの推定器について、推定器を導出し、その二次誤差に対して濃度境界を与える。
これにより、人工サンプルの最適比率を選択するなど、メソッド比較とハイパーパラメータチューニングの両方が可能になる。
技術的には、我々の分析はランダム行列理論の道具に依存している。
本稿では, 一般分解性行列に対する新しい決定論的等価性を導入し, 特定の構造を持つ依存試料を収容する。
我々は数値実験で理論結果を支持する。
関連論文リスト
- Asymptotics of Linear Regression with Linearly Dependent Data [28.005935031887038]
非ガウス共変量の設定における線形回帰の計算について検討する。
本稿では,依存性が推定誤差と正規化パラメータの選択にどのように影響するかを示す。
論文 参考訳(メタデータ) (2024-12-04T20:31:47Z) - Spectral Estimators for Structured Generalized Linear Models via Approximate Message Passing [28.91482208876914]
本研究では,高次元一般化線形モデルにおけるパラメータ推定の問題について考察する。
広く使われているにもかかわらず、厳密なパフォーマンス特性とデータ前処理の原則が、構造化されていない設計でのみ利用可能である。
論文 参考訳(メタデータ) (2023-08-28T11:49:23Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
本稿ではランダム行列理論の手法を用いて、単純な線形回帰に対して理想的なトレーニング-テストデータ分割を求める。
それは「理想」を整合性計量を満たすものとして定義し、すなわち経験的モデル誤差は実際の測定ノイズである。
本論文は,任意のモデルのトレーニングとテストサイズを,真に最適な方法で解決した最初の論文である。
論文 参考訳(メタデータ) (2021-12-11T13:18:33Z) - Weight Vector Tuning and Asymptotic Analysis of Binary Linear
Classifiers [82.5915112474988]
本稿では,スカラーによる判別器の分解をパラメータ化することで,ジェネリックバイナリ線形分類器の重みベクトルチューニングを提案する。
また,重みベクトルチューニングは,高推定雑音下での線形判別分析(LDA)の性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2021-10-01T17:50:46Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。