論文の概要: What is in the model? A Comparison of variable selection criteria and model search approaches
- arxiv url: http://arxiv.org/abs/2510.02628v1
- Date: Fri, 03 Oct 2025 00:14:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 16:35:52.210199
- Title: What is in the model? A Comparison of variable selection criteria and model search approaches
- Title(参考訳): モデルには何があるのか?変数選択基準とモデル探索手法の比較
- Authors: Shuangshuang Xu, Marco A. R. Ferreira, Allison N. Tegge,
- Abstract要約: 正確な識別率(CIR)、リコール、偽発見率(FDR)のパフォーマンス指標を用いた変数選択法の比較を行った。
その結果, 大規模・小規模のモデル空間において, サーチBICとサーチBICが他の手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For many scientific questions, understanding the underlying mechanism is the goal. To help investigators better understand the underlying mechanism, variable selection is a crucial step that permits the identification of the most associated regression variables of interest. A variable selection method consists of model evaluation using an information criterion and a search of the model space. Here, we provide a comprehensive comparison of variable selection methods using performance measures of correct identification rate (CIR), recall, and false discovery rate (FDR). We consider the BIC and AIC for evaluating models, and exhaustive, greedy, LASSO path, and stochastic search approaches for searching the model space; we also consider LASSO using cross validation. We perform simulation studies for linear and generalized linear models that parametrically explore a wide range of realistic sample sizes, effect sizes, and correlations among regression variables. We consider model spaces with a small and larger number of potential regressors. The results show that the exhaustive search BIC and stochastic search BIC outperform the other methods when considering the performance measures on small and large model spaces, respectively. These approaches result in the highest CIR and lowest FDR, which collectively may support long-term efforts towards increasing replicability in research.
- Abstract(参考訳): 多くの科学的疑問に対して、基礎となるメカニズムを理解することが目的である。
研究者が基礎となるメカニズムをより深く理解するために、変数選択は最も関連する回帰変数の同定を可能にする重要なステップである。
変数選択法は、情報基準を用いたモデル評価とモデル空間の探索からなる。
本稿では,正しい識別率(CIR),リコール(リコール),偽発見率(FDR)のパフォーマンス測定値を用いて,変数選択法を総合的に比較する。
我々は、モデル評価のためのBICとAIC、およびモデル空間を探索するための徹底的、欲求的で、LASSO経路、確率的探索アプローチについて検討し、また、クロスバリデーションを用いたLASSOについても検討する。
線形および一般化された線形モデルに対するシミュレーション研究を行い、回帰変数間の幅広い現実的なサンプルサイズ、効果サイズ、相関をパラメトリックに探索する。
潜在的回帰器の数が少なくて大きいモデル空間を考える。
その結果, 探索BICと確率探索BICは, 小型・大規模モデル空間における性能評価において, それぞれ他の手法よりも優れていることがわかった。
これらのアプローチにより、最も高いCIRと最も低いFDRが得られ、研究の再現性を高めるための長期的な取り組みを総合的に支援することができる。
関連論文リスト
- Model Correlation Detection via Random Selection Probing [62.093777777813756]
既存の類似性に基づく手法では、モデルパラメータにアクセスしたり、しきい値なしでスコアを生成する必要がある。
本稿では,モデル相関検出を統計的テストとして定式化する仮説テストフレームワークであるランダム選択探索(RSP)を紹介する。
RSPは相関の証拠を定量化する厳密なp-値を生成する。
論文 参考訳(メタデータ) (2025-09-29T01:40:26Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
生成検索は、検索を自己回帰生成タスクとして再構成し、大きな言語モデルがクエリから直接ターゲット文書を生成する。
生成的検索におけるトレーニングと推論のスケーリング法則を体系的に検討し,モデルのサイズ,トレーニングデータスケール,推論時間計算が協調的に性能に与える影響について検討した。
論文 参考訳(メタデータ) (2025-03-24T17:59:03Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - A Statistical-Modelling Approach to Feedforward Neural Network Model Selection [0.8287206589886881]
フィードフォワードニューラルネットワーク(FNN)は非線形回帰モデルと見なすことができる。
FNNのためのベイズ情報基準(BIC)を用いて,新しいモデル選択法を提案する。
サンプル外性能よりもBICを選択することは、真のモデルを回復する確率を増大させる。
論文 参考訳(メタデータ) (2022-07-09T11:07:04Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
アクティブラーニングは、モデルのパラメータに適合するために必要なデータ量を削減しようとする。
潜在変数モデルは神経科学、心理学、その他の様々な工学、科学分野において重要な役割を果たす。
論文 参考訳(メタデータ) (2022-02-27T19:07:12Z) - Variable selection with missing data in both covariates and outcomes:
Imputation and machine learning [1.0333430439241666]
欠落したデータ問題は、健康研究で普遍的です。
機械学習はパラメトリックな仮定を弱める。
XGBoostとBARTは、さまざまな設定で最高のパフォーマンスを発揮します。
論文 参考訳(メタデータ) (2021-04-06T20:18:29Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
一般化線形潜在変数モデル(GLLVM)は、そのような因子モデルを非ガウス応答に一般化する。
GLLVMのモデルパラメータを推定する現在のアルゴリズムは、集約的な計算を必要とし、大規模なデータセットにスケールしない。
本稿では,GLLVMを高次元データセットに適用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-06T04:28:19Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。