論文の概要: CoDA: Agentic Systems for Collaborative Data Visualization
- arxiv url: http://arxiv.org/abs/2510.03194v1
- Date: Fri, 03 Oct 2025 17:30:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 16:35:52.507438
- Title: CoDA: Agentic Systems for Collaborative Data Visualization
- Title(参考訳): CoDA:協調データ可視化のためのエージェントシステム
- Authors: Zichen Chen, Jiefeng Chen, Sercan Ö. Arik, Misha Sra, Tomas Pfister, Jinsung Yoon,
- Abstract要約: 深層研究はデータ分析に革命をもたらしたが、データサイエンティストは依然として手作業による視覚化にかなりの時間を費やしている。
単純なシングルエージェントシステムやマルチエージェントシステムを含む既存のアプローチは、しばしばタスクを単純化する。
本稿では,メタデータ分析,タスク計画,コード生成,自己回帰に特殊なLLMエージェントを利用するマルチエージェントシステムであるCoDAを紹介する。
- 参考スコア(独自算出の注目度): 57.270599188947294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep research has revolutionized data analysis, yet data scientists still devote substantial time to manually crafting visualizations, highlighting the need for robust automation from natural language queries. However, current systems struggle with complex datasets containing multiple files and iterative refinement. Existing approaches, including simple single- or multi-agent systems, often oversimplify the task, focusing on initial query parsing while failing to robustly manage data complexity, code errors, or final visualization quality. In this paper, we reframe this challenge as a collaborative multi-agent problem. We introduce CoDA, a multi-agent system that employs specialized LLM agents for metadata analysis, task planning, code generation, and self-reflection. We formalize this pipeline, demonstrating how metadata-focused analysis bypasses token limits and quality-driven refinement ensures robustness. Extensive evaluations show CoDA achieves substantial gains in the overall score, outperforming competitive baselines by up to 41.5%. This work demonstrates that the future of visualization automation lies not in isolated code generation but in integrated, collaborative agentic workflows.
- Abstract(参考訳): 深層研究はデータ分析に革命をもたらしたが、データサイエンティストは依然として手作業による視覚化にかなりの時間を費やしており、自然言語クエリによる堅牢な自動化の必要性を強調している。
しかし、現在のシステムは複数のファイルを含む複雑なデータセットや反復的な改善に苦慮している。
単純なシングルエージェントシステムやマルチエージェントシステムを含む既存のアプローチは、データ複雑さやコードエラー、最終的な可視化品質を堅牢に管理するのに失敗しながら、初期クエリ解析に重点を置いて、タスクを単純化することが多い。
本稿では,この課題を協調的マルチエージェント問題として再考する。
本稿では,メタデータ分析,タスク計画,コード生成,自己回帰に特殊なLLMエージェントを利用するマルチエージェントシステムであるCoDAを紹介する。
このパイプラインを形式化し、メタデータ中心の分析がトークン制限をバイパスし、品質駆動の洗練によって堅牢性が保証されることを示す。
総合評価では、CoDAは総合得点で大幅に上昇し、競争ベースラインを最大41.5%上回った。
この研究は、可視化自動化の未来は、独立したコード生成ではなく、統合された協調的なエージェントワークフローにあることを示している。
関連論文リスト
- Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
検索強化生成(RAG)の形式を評価するための新しいベンチマークを提案する。
RAGは、多種多様な、しかし関連するソースに対して、ソースを意識したマルチホップ推論を必要とする。
製品計画、開発、サポートステージをまたいだビジネスをシミュレートする合成データパイプラインを使用して構築します。
論文 参考訳(メタデータ) (2025-06-29T08:34:59Z) - Deep Research Agents: A Systematic Examination And Roadmap [109.53237992384872]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - TRAIL: Trace Reasoning and Agentic Issue Localization [5.025960714013197]
この研究は、エージェントワークフロートレースに対する堅牢でダイナミックな評価方法の必要性を明確に示している。
我々は,この分類法を用いて構築され,確立されたエージェント・ベンチマークに基づいて構築された148個の大型人名跡(TRAIL)について述べる。
生態学的妥当性を確保するため,単一エージェントシステムとマルチエージェントシステムの両方のトレースをキュレートする。
論文 参考訳(メタデータ) (2025-05-13T14:55:31Z) - The AI Co-Ethnographer: How Far Can Automation Take Qualitative Research? [51.40252017262535]
AI Co-Ethnographer (AICoE)は、定性的研究のために開発された新しいエンドツーエンドパイプラインである。
AICoEは、オープンコーディング、コード統合、コードアプリケーション、さらにはパターン発見を含む、プロセス全体を整理する。
論文 参考訳(メタデータ) (2025-04-21T21:31:28Z) - DatawiseAgent: A Notebook-Centric LLM Agent Framework for Adaptive and Robust Data Science Automation [10.390461679868197]
我々は、適応的で堅牢なデータサイエンス自動化のためのノートブック中心の大規模言語モデル(LLM)エージェントフレームワークであるDatawiseAgentを紹介する。
人間のデータサイエンティストが計算ノートブックでどのように機能するかに触発されたDatawiseAgentは、統一された相互作用表現とマルチステージアーキテクチャを導入した。
論文 参考訳(メタデータ) (2025-03-10T08:32:33Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
拡張コンテキストウィンドウを持つLong Language Model (LLM) は、情報抽出、質問応答、複雑な計画シナリオなどのタスクを大幅に改善した。
既存のメソッドは通常、Self-Instructフレームワークを使用して、長いコンテキスト能力を改善するために命令チューニングデータを生成する。
本稿では,品質検証エージェント,シングルホップ質問生成エージェント,複数質問サンプリング戦略,マルチホップ質問マーガーエージェントを組み込んだマルチエージェント対話型マルチホップ生成フレームワークを提案する。
以上の結果から,我々の合成高品位長文指導データにより,多量の人体で訓練したモデルよりも,モデル性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-09-03T13:30:00Z) - DCA-Bench: A Benchmark for Dataset Curation Agents [9.60250892491588]
不完全なドキュメンテーション、不正確なラベル、倫理的懸念、時代遅れの情報といったデータ品質問題は、広く使われているデータセットで共通している。
大きな言語モデル(LLM)の急増する能力により、LLMエージェントによる隠れデータセット問題の発見の合理化が約束されている。
本研究では,この課題に対処するLLMエージェントの能力を評価するためのベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-11T14:02:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。