論文の概要: LLM-Guided Evolutionary Program Synthesis for Quasi-Monte Carlo Design
- arxiv url: http://arxiv.org/abs/2510.03650v1
- Date: Sat, 04 Oct 2025 03:32:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.177967
- Title: LLM-Guided Evolutionary Program Synthesis for Quasi-Monte Carlo Design
- Title(参考訳): 準モンテカルロ設計のためのLLM誘導進化プログラム合成
- Authors: Amir Sadikov,
- Abstract要約: 高次元積分のための準モンテカルロ法(QMC)の低差分点集合とデジタルシーケンス
プログラム合成として長期にわたるQMC設計問題を2つ導入し,LLM誘導進化ループを用いて解決した。
我々の2段階の手順は、建設的なコード提案と反復的な数値精製を組み合わせたものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Low-discrepancy point sets and digital sequences underpin quasi-Monte Carlo (QMC) methods for high-dimensional integration. We cast two long-standing QMC design problems as program synthesis and solve them with an LLM-guided evolutionary loop that mutates and selects code under task-specific fitness: (i) constructing finite 2D/3D point sets with low star discrepancy, and (ii) choosing Sobol' direction numbers that minimize randomized QMC error on downstream integrands. Our two-phase procedure combines constructive code proposals with iterative numerical refinement. On finite sets, we rediscover known optima in small 2D cases and set new best-known 2D benchmarks for N >= 40, while matching most known 3D optima up to the proven frontier (N <= 8) and reporting improved 3D benchmarks beyond. On digital sequences, evolving Sobol' parameters yields consistent reductions in randomized quasi-Monte Carlo (rQMC) mean-squared error for several 32-dimensional option-pricing tasks relative to widely used Joe--Kuo parameters, while preserving extensibility to any sample size and compatibility with standard randomizations. Taken together, the results demonstrate that LLM-driven evolutionary program synthesis can automate the discovery of high-quality QMC constructions, recovering classical designs where they are optimal and improving them where finite-N structure matters. Data and code are available at https://github.com/hockeyguy123/openevolve-star-discrepancy.git.
- Abstract(参考訳): 高次元積分のための準モンテカルロ法(QMC)の低差分点集合とデジタルシーケンス
我々は、長期にわたるQMC設計問題をプログラム合成として、LLM誘導進化ループで解決し、タスク固有の適合性の下でコードを変更・選択する。
(i)星の差が小さい有限2D/3D点集合を構築し、
(2)下流積分器におけるランダム化QMC誤差を最小限に抑えるソボルの方向数を選択する。
我々の2段階の手順は、建設的なコード提案と反復的な数値精製を組み合わせたものである。
有限集合上では、小さな2Dのケースで既知のオプティマを再発見し、N >= 40の最もよく知られた2Dベンチマークを新たに設定し、最もよく知られている3Dオプティマを証明されたフロンティア(N <= 8)までマッチングし、改善された3Dベンチマークを報告した。
デジタルシーケンスでは、進化するSobolのパラメータはランダム化された準モンテカルロ(rQMC)の平均二乗誤差を、広く使われているJoe-Kuoパラメータと比較して32次元のオプション価格のタスクに対して一貫した減少と、任意のサンプルサイズへの拡張性と標準ランダム化との整合性を保つ。
その結果、LLMによる進化的プログラム合成は、高品質なQMC構成の発見を自動化し、最適化された古典的な設計を復元し、有限N構造が重要な点を改善することができることを示した。
データとコードはhttps://github.com/hockeyguy123/openevolve-star-discrepancy.gitで公開されている。
関連論文リスト
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
本稿では,円滑なベルマン作用素を持つ連続空間マルコフ決定過程(MDP)の一般クラスにおいて,$varepsilon$-optimal Policyを学習する問題を考察する。
我々のソリューションの鍵となるのは、調和解析のアイデアに基づく新しい射影技術である。
我々の結果は、連続空間 MDP における2つの人気と矛盾する視点のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-05-10T09:58:47Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
我々のアルゴリズムは、AQLMと呼ばれ、情報検索のための古典的な加算量子化(AQ)アプローチを一般化する。
トークン生成のためのAQLMの高速GPUおよびCPU実装を提供しており、最適化されたFP16実装を高速にマッチングまたは性能良くすることができる。
論文 参考訳(メタデータ) (2024-01-11T18:54:44Z) - Learning Zero-Sum Linear Quadratic Games with Improved Sample Complexity and Last-Iterate Convergence [18.1055795175092]
Zero-sum Linear Quadratic (LQ) ゲームは最適制御の基本である。
本研究では,より単純な入れ子ゼロ階法 (NPG) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-08T11:47:31Z) - Quick Adaptive Ternary Segmentation: An Efficient Decoding Procedure For Hidden Markov Models [41.99844472131922]
ノイズ観測から元の信号を復号することは、ほぼすべてのHMMデータ解析における主要な目標の1つである。
QATS, QATS, QATS, QATS, QATS, QATS, QATS, QATS, QATS, QATS, QATS, QATSについて述べる。
QATSの実装はGitHubのRパッケージQATSにある。
論文 参考訳(メタデータ) (2023-05-29T19:37:48Z) - A Framework for Bidirectional Decoding: Case Study in Morphological
Inflection [4.602447284133507]
外部からシーケンスを復号するフレームワークを提案する。
各ステップで、モデルは左、右にトークンを生成するか、左と右のシーケンスを結合するかを選択します。
我々のモデルは2022年と2023年の共有タスクに最先端のSOTA(State-of-the-art)を設定し、それぞれ平均精度4.7ポイントと2.7ポイント以上で次の最高のシステムを上回った。
論文 参考訳(メタデータ) (2023-05-21T22:08:31Z) - Optimization-based Block Coordinate Gradient Coding for Mitigating
Partial Stragglers in Distributed Learning [58.91954425047425]
本稿では,分散学習における部分トラグラーの緩和を目的とした,新たな勾配符号化方式を提案する。
L の符号パラメータを L に表わした勾配座標符号化方式を提案する。
論文 参考訳(メタデータ) (2022-06-06T09:25:40Z) - DASHA: Distributed Nonconvex Optimization with Communication
Compression, Optimal Oracle Complexity, and No Client Synchronization [77.34726150561087]
我々は,分散最適化問題に対する新しい手法であるDASHAを開発し,解析する。
MARINAとは異なり、新しいDASHAとDASHA-MVRは圧縮ベクターのみを送信し、ノードを同期しないため、学習をより実用的なものにしている。
論文 参考訳(メタデータ) (2022-02-02T20:10:40Z) - Robust and Accurate Superquadric Recovery: a Probabilistic Approach [29.7543198254021]
点雲から超四分儀を回収する最初の確率的手法を提案する。
提案手法は, 合成データセットと実世界のデータセットの精度, 効率, 堅牢性の観点から, 最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-11-29T13:17:17Z) - Convex Optimization for Parameter Synthesis in MDPs [19.808494349302784]
確率論的モデル検査は、マルコフ決定プロセスが時間論理の仕様を満たすかどうかを証明することを目的としている。
我々は、局所最適実行時ソリューションを反復的に得る2つのアプローチを開発する。
数十万のパラメータを持つ衛星パラメータ合成問題に対するアプローチと,その拡張性を,広く使用されているベンチマーク上で実証する。
論文 参考訳(メタデータ) (2021-06-30T21:23:56Z) - Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model
for Protein Design [70.27706384570723]
Fold2Seqは特定の標的に条件付きタンパク質配列を設計するための新しいフレームワークである。
Fold2Seqの性能は, シーケンス設計の速度, カバレッジ, 信頼性において向上したか, 同等であったかを示す。
フォールドベースのFold2Seqの独特な利点は、構造ベースのディープモデルやRosettaDesignと比較して、3つの現実世界の課題においてより明確になる。
論文 参考訳(メタデータ) (2021-06-24T14:34:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。