論文の概要: Security Analysis of Ponzi Schemes in Ethereum Smart Contracts
- arxiv url: http://arxiv.org/abs/2510.03819v1
- Date: Sat, 04 Oct 2025 14:32:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.276356
- Title: Security Analysis of Ponzi Schemes in Ethereum Smart Contracts
- Title(参考訳): EthereumスマートコントラクトにおけるPonziスキーマのセキュリティ解析
- Authors: Chunyi Zhang, Qinghong Wei, Xiaoqi Li,
- Abstract要約: 本稿では,これらの詐欺を4つの構造型に分類し,プログラム解析の観点から,ポンジスキーム契約ソースコードの本質的な特徴について考察する。
Mythrilツールを使用して、代表ケースの静的および動的解析を行い、脆弱性と運用メカニズムを明らかにする。
- 参考スコア(独自算出の注目度): 1.6405153080101806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of blockchain technology has precipitated the widespread adoption of Ethereum and smart contracts across a variety of sectors. However, this has also given rise to numerous fraudulent activities, with many speculators embedding Ponzi schemes within smart contracts, resulting in significant financial losses for investors. Currently, there is a lack of effective methods for identifying and analyzing such new types of fraudulent activities. This paper categorizes these scams into four structural types and explores the intrinsic characteristics of Ponzi scheme contract source code from a program analysis perspective. The Mythril tool is employed to conduct static and dynamic analyses of representative cases, thereby revealing their vulnerabilities and operational mechanisms. Furthermore, this paper employs shell scripts and command patterns to conduct batch detection of open-source smart contract code, thereby unveiling the common characteristics of Ponzi scheme smart contracts.
- Abstract(参考訳): ブロックチェーン技術の急速な進歩により、Ethereumやスマートコントラクトがさまざまな分野で広く採用されるようになった。
しかし、これはまた多くの不正行為を引き起こし、多くの投機家がスマートコントラクトにポンツィのスキームを埋め込んでおり、投資家にとって大きな損失をもたらした。
現在,このような不正行為の特定・分析に有効な方法が存在しない。
本稿では,これらの詐欺を4つの構造型に分類し,プログラム解析の観点からPonziスキームの契約ソースコードの本質的特徴を考察する。
Mythrilツールを使用して、代表ケースの静的および動的解析を行い、脆弱性と運用メカニズムを明らかにする。
さらに,本研究では,オープンソースのスマートコントラクトコードのバッチ検出を行うためにシェルスクリプトとコマンドパターンを用いて,Ponziスキームスマートコントラクトの共通特性を明らかにする。
関連論文リスト
- Decompiling Smart Contracts with a Large Language Model [51.49197239479266]
Etherscanの78,047,845のスマートコントラクトがデプロイされているにも関わらず(2025年5月26日現在)、わずか767,520 (1%)がオープンソースである。
この不透明さは、オンチェーンスマートコントラクトバイトコードの自動意味解析を必要とする。
バイトコードを可読でセマンティックに忠実なSolidityコードに変換する,先駆的な逆コンパイルパイプラインを導入する。
論文 参考訳(メタデータ) (2025-06-24T13:42:59Z) - A Comprehensive Study of Exploitable Patterns in Smart Contracts: From Vulnerability to Defense [1.1138859624936408]
スマートコントラクト内の脆弱性は、個々のアプリケーションのセキュリティを損なうだけでなく、より広範なブロックチェーンエコシステムに重大なリスクをもたらす。
本稿では,スマートコントラクトの重要なセキュリティリスク,特にSolidityで記述され,仮想マシン上で実行されるセキュリティリスクを包括的に分析する。
攻撃シナリオを複製し、効果的な対策を評価することにより、2つの一般的かつ重要なタイプ(冗長性と整数オーバーフロー)に焦点を当てる。
論文 参考訳(メタデータ) (2025-04-30T10:00:36Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
2023年だけでも、そのような脆弱性は数十億ドルを超える巨額の損失をもたらした。
スマートコントラクトの脆弱性を検出し、軽減するために、さまざまなツールが開発されている。
本研究では,既存のセキュリティスキャナの有効性と,現在も継続している脆弱性とのギャップについて検討する。
論文 参考訳(メタデータ) (2023-12-27T11:26:26Z) - SourceP: Detecting Ponzi Schemes on Ethereum with Source Code [0.5898893619901381]
SourcePは、事前訓練されたモデルとデータフローを使用して、プラットフォーム上のスマートPonziスキームを検出する方法である。
まず、スマートコントラクトのソースコードをデータフローグラフに変換し、学習コード表現に基づく事前学習モデルを導入し、分類モデルを構築する。
実験の結果、SourcePは87.2%のリコールと90.7%のFスコアを達成し、スマートPonziスキームを検出した。
論文 参考訳(メタデータ) (2023-06-02T16:40:42Z) - Enhancing Smart Contract Security Analysis with Execution Property Graphs [48.31617821205042]
ランタイム仮想マシン用に特別に設計された動的解析フレームワークであるClueを紹介する。
Clueは契約実行中に重要な情報をキャプチャし、新しいグラフベースの表現であるExecution Property Graphを使用する。
評価結果から, クリューの真正率, 偽正率の低い優れた性能が, 最先端のツールよりも優れていた。
論文 参考訳(メタデータ) (2023-05-23T13:16:42Z) - Combining Graph Neural Networks with Expert Knowledge for Smart Contract
Vulnerability Detection [37.7763374870026]
既存の契約のセキュリティ分析の取り組みは、労働集約的でスケーリング不能な専門家によって定義された厳格なルールに依存している。
本稿では,正規化グラフからグラフ特徴を抽出する新たな時間的メッセージ伝達ネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T13:16:30Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
従来のスマートコントラクトの脆弱性検出方法は、専門家の規則に大きく依存している。
最近のディープラーニングアプローチはこの問題を軽減するが、有用な専門家の知識をエンコードすることができない。
ソースコードから専門家パターンを抽出する自動ツールを開発する。
次に、深いグラフの特徴を抽出するために、コードをセマンティックグラフにキャストします。
論文 参考訳(メタデータ) (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。