論文の概要: AI-Assisted Pleural Effusion Volume Estimation from Contrast-Enhanced CT Images
- arxiv url: http://arxiv.org/abs/2510.03856v1
- Date: Sat, 04 Oct 2025 16:06:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.299852
- Title: AI-Assisted Pleural Effusion Volume Estimation from Contrast-Enhanced CT Images
- Title(参考訳): 造影CT画像からのAI支援胸水体積推定
- Authors: Sanhita Basu, Tomas Fröding, Ali Teymur Kahraman, Dimitris Toumpanakis, Tobias Sjöblom,
- Abstract要約: Pleuralfusions (PE) は多くの異なる臨床疾患でよく見られる疾患である。
CTスキャンで音量を正確に測定することは難しい。
コントラスト強調CTボリュームに基づく半教師付きディープラーニングフレームワークを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Pleural Effusions (PE) is a common finding in many different clinical conditions, but accurately measuring their volume from CT scans is challenging. Purpose: To improve PE segmentation and quantification for enhanced clinical management, we have developed and trained a semi-supervised deep learning framework on contrast-enhanced CT volumes. Materials and Methods: This retrospective study collected CT Pulmonary Angiogram (CTPA) data from internal and external datasets. A subset of 100 cases was manually annotated for model training, while the remaining cases were used for testing and validation. A novel semi-supervised deep learning framework, Teacher-Teaching Assistant-Student (TTAS), was developed and used to enable efficient training in non-segmented examinations. Segmentation performance was compared to that of state-of-the-art models. Results: 100 patients (mean age, 72 years, 28 [standard deviation]; 55 men) were included in the study. The TTAS model demonstrated superior segmentation performance compared to state-of-the-art models, achieving a mean Dice score of 0.82 (95% CI, 0.79 - 0.84) versus 0.73 for nnU-Net (p < 0.0001, Student's T test). Additionally, TTAS exhibited a four-fold lower mean Absolute Volume Difference (AbVD) of 6.49 mL (95% CI, 4.80 - 8.20) compared to nnU-Net's AbVD of 23.16 mL (p < 0.0001). Conclusion: The developed TTAS framework offered superior PE segmentation, aiding accurate volume determination from CT scans.
- Abstract(参考訳): 背景: Pleural Effusions (PE) は様々な臨床症状でよく見られるが,CTスキャンでその容積を正確に測定することは困難である。
目的: 臨床管理向上のためのPEセグメンテーションと定量化を改善するため, 造影CTボリュームを用いた半教師付き深層学習フレームワークを開発し, 訓練を行った。
材料と方法: 内外のデータセットからCTPA(CT lung angiogram)データを収集した。
モデルのトレーニングには100のケースのサブセットが手動でアノテートされ、残りのケースはテストと検証に使用された。
半教師付き深層学習フレームワークであるTTAS(Teacher-Teaching Assistant-Student)を開発した。
セグメンテーション性能は最先端のモデルと比較された。
結果: 対象患者は平均年齢72歳28名, 男性55名であった。
TTASモデルは最先端モデルに比べてセグメンテーション性能が優れ、平均Diceスコアは0.82(95% CI, 0.79 - 0.84)、nnU-Netは0.73(学生のTテストでは0.0001)であった。
さらにTTASは平均絶対体積差(AbVD)が6.49 mL(95% CI, 4.80 - 8.20)で、nnU-NetのAbVDは23.16 mL(p < 0.0001)であった。
結語: TTAS フレームワークは,CT スキャンによる正確な体積決定を補助し,優れたPEセグメンテーションを実現した。
関連論文リスト
- Pretrained hybrid transformer for generalizable cardiac substructures segmentation from contrast and non-contrast CTs in lung and breast cancers [3.704003490598663]
放射線治療計画(RTP)のためのAI自動セグメンテーションは、トレーニングデータセットとは異なる特徴を持つ臨床ケースに適用した場合、劣化する可能性がある。
肺がんおよび乳癌患者の心下組織を分断するために, プレトレーニングしたトランスフォーマーをハイブリッドトランスフォーマー畳み込みネットワーク (HTN) に改良した。
HTNは, 画像, 患者特性の異なるCTからの心筋部分構造を, 確固たる精度(幾何学的, 線量的測定値)で示していた。
論文 参考訳(メタデータ) (2025-05-16T04:48:33Z) - TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI [59.86827659781022]
nnU-Netモデル(TotalSegmentator)をMRIおよび80原子構造で訓練した。
予測されたセグメンテーションと専門家基準セグメンテーションとの間には,ディススコアが算出され,モデル性能が評価された。
オープンソースで使いやすいモデルは、80構造の自動的で堅牢なセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - Deep learning-based detection of intravenous contrast in computed
tomography scans [0.7313653675718069]
CTスキャンにおける静脈内(IV)コントラストの同定は、モデル開発と試験のためのデータキュレーションの鍵となる要素である。
我々は,CTスキャン内でIVコントラストを識別するCNNベースのディープラーニングプラットフォームを開発し,検証した。
論文 参考訳(メタデータ) (2021-10-16T00:46:45Z) - Multi-institutional Validation of Two-Streamed Deep Learning Method for
Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and
FDG-PETCT [14.312659667401302]
食道悪性腫瘍容積(GTV)コントゥーリングの現況は,高作業コストとユーザ間の変動を手作業で記述することに依存している。
1施設で開発された深層学習(DL)多モード食道GTVコンチューリングモデルの臨床的応用性を検証する。
論文 参考訳(メタデータ) (2021-10-11T13:56:09Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Rapid quantification of COVID-19 pneumonia burden from computed
tomography with convolutional LSTM networks [1.0072268949897432]
新型肺炎における肺病変の迅速定量と分化のための新しい完全自動化ディープラーニングフレームワークを提案する。
SARS-CoV-2の陽性逆転写ポリメラーゼ連鎖反応試験結果を有する197例のCTデータセット上で,この方法の性能を評価した。
論文 参考訳(メタデータ) (2021-03-31T22:09:14Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
提案法は,非造影胸部CTを入力として,病変,肺,葉を3次元に分割する。
この方法では、肺の重症度と葉の関与度を2つの組み合わせて測定し、COVID-19の異常度と高不透明度の存在度を定量化する。
このアルゴリズムの評価は、カナダ、ヨーロッパ、米国からの200人の参加者(感染者100人、健康管理100人)のCTで報告されている。
論文 参考訳(メタデータ) (2020-04-02T21:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。