論文の概要: Use of Quadcopter Wakes to Supplement Strawberry Pollination
- arxiv url: http://arxiv.org/abs/2510.03974v1
- Date: Sat, 04 Oct 2025 23:23:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.367452
- Title: Use of Quadcopter Wakes to Supplement Strawberry Pollination
- Title(参考訳): クアッドコプター・ウェイクのイチゴ汚染補充への応用
- Authors: Sadie Cutler, Ben DeFay, Scott McArt, Kirstin Petersen,
- Abstract要約: ポリニネーターは世界の生態系や食糧供給に欠かせない。
研究により、イチゴを含むいくつかの作物の受粉不足が発見された。
本稿では,風の受粉に基づく人工受粉法について検討する。
- 参考スコア(独自算出の注目度): 4.147346416230272
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pollinators are critical to the world's ecosystems and food supply, yet recent studies have found pollination shortfalls in several crops, including strawberry. This is troubling because wild and managed pollinators are currently experiencing declines. One possibility is to try and provide supplemental pollination solutions. These solutions should be affordable and simple for farmers to implement if their use is to be widespread; quadcopters are a great example, already used for monitoring on many farms. This paper investigates a new method for artificial pollination based on wind pollination that bears further investigation. After determining the height where the lateral flow is maximized, we performed field experiments with a quadcopter assisting natural pollinators. Although our results in the field were inconclusive, lab studies show that the idea shows promise and could be adapted for better field results.
- Abstract(参考訳): ポリニネーターは世界の生態系や食糧供給に欠かせないが、最近の研究ではイチゴなどいくつかの作物の受粉不足が報告されている。
野生および管理された受粉者が現在減少しているため、これは厄介である。
1つの可能性として、補充的な受粉ソリューションの提供がある。
クアッドコプターは素晴らしい例であり、すでに多くの農場でモニタリングに使われている。
本稿では, 風による人工受粉法について検討し, さらなる検討を行った。
横流が最大になる高さを決定した後、自然汚染物質を補助するクワッドコプターを用いてフィールド実験を行った。
この分野の結果は決定的ではなかったが、実験室では、このアイデアが有望であり、より良いフィールド結果に適応できることが示されている。
関連論文リスト
- Multispectral Fine-Grained Classification of Blackgrass in Wheat and Barley Crops [2.580056799681784]
ブラックグラス(Blackgrass)は、ヨーロッパ北西部の穀物に特に問題を引き起こす草の雑草である。
マシンビジョンとマルチスペクトルイメージングを用いて,黒草を識別するための最先端手法の有効性について検討した。
論文 参考訳(メタデータ) (2024-05-03T16:23:41Z) - Leafy Spurge Dataset: Real-world Weed Classification Within Aerial Drone Imagery [37.51633459581306]
侵入する植物種は、農業と農地の両方の生態に有害である。
ユープホルビア・エスラ(Euphorbia esula)のような外来植物は、東ヨーロッパから北アメリカの大部分に分布している。
米国モンタナ州西部の草原で、葉質のふわふわしたスプージの存在と不在のデータセットを収集し、商用ドローンでこれらの地域を調査した。
我々はこれらのデータに基づいて画像分類器を訓練し、我々の最高の性能モデルであるDINOv2視覚変換器は、葉の隆起を0.84精度で同定した。
論文 参考訳(メタデータ) (2024-05-02T23:53:29Z) - An Efficient Deep Learning-based approach for Recognizing Agricultural
Pests in the Wild [0.0]
農夫が経験した最大の課題の1つは、農作物の収量で害虫と戦うことである。
これは、簡単かつ効果的に昆虫の害虫を識別することを必要とする。
我々は,それぞれに最適な方法を見出すために,様々な方法を検討する広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-10-25T20:42:20Z) - Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation [42.39035033967183]
サービスロボットは、周囲を理解し、野生のターゲットを識別するリアルタイム認識システムが必要です。
しかし、既存の方法はしばしば、新しい作物や環境条件への一般化において不足している。
本稿では,知識蒸留を用いた領域一般化手法を提案する。
論文 参考訳(メタデータ) (2023-04-03T14:28:29Z) - MetaRF: Differentiable Random Forest for Reaction Yield Prediction with
a Few Trails [58.47364143304643]
本稿では,反応収率予測問題に焦点をあてる。
筆者らはまず,数発の収量予測のために特別に設計された,注意に基づく識別可能なランダム森林モデルであるMetaRFを紹介した。
数発の学習性能を改善するために,さらに次元還元に基づくサンプリング手法を導入する。
論文 参考訳(メタデータ) (2022-08-22T06:40:13Z) - Towards Robust Ranker for Text Retrieval [83.15191578888188]
ローダは、デファクトの'retrieval & rerank'パイプラインで必須の役割を果たす。
ローダは、デファクトの'retrieval & rerank'パイプラインで必須の役割を果たす。
論文 参考訳(メタデータ) (2022-06-16T10:27:46Z) - Spatial Monitoring and Insect Behavioural Analysis Using Computer Vision
for Precision Pollination [6.2997667081978825]
昆虫は作物の最も重要な世界的な受粉者であり、自然生態系の持続可能性を維持する上で重要な役割を担っている。
現在のコンピュータビジョンは、複雑な屋外環境における昆虫追跡を空間的に制限している。
本稿では,昆虫数計測,昆虫の動き追跡,行動解析,受粉予測のためのマーカーレスデータキャプチャーシステムを紹介する。
論文 参考訳(メタデータ) (2022-05-10T05:11:28Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
この研究は、1万3千以上の天体を含む最初の大規模花粉画像データセットを提示する。
本稿では, エアロバイオロジカルサンプリング, 顕微鏡画像取得, 物体検出, セグメンテーション, ラベル付けなど, 採用データ取得のステップに注目した。
論文 参考訳(メタデータ) (2020-07-09T10:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。