論文の概要: Attending on Multilevel Structure of Proteins enables Accurate Prediction of Cold-Start Drug-Target Interactions
- arxiv url: http://arxiv.org/abs/2510.04126v1
- Date: Sun, 05 Oct 2025 09:59:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.472166
- Title: Attending on Multilevel Structure of Proteins enables Accurate Prediction of Cold-Start Drug-Target Interactions
- Title(参考訳): タンパク質のマルチレベル構造への取り組みは、コールドスタートドラッグ-ターゲット相互作用の正確な予測を可能にする
- Authors: Ziying Zhang, Yaqing Wang, Yuxuan Sun, Min Ye, Quanming Yao,
- Abstract要約: ColdDTIは、コールドスタートDTI予測のためのタンパク質多レベル構造に関与するフレームワークである。
我々は多レベルタンパク質構造と薬物構造との相互作用をマイニングするために階層的注意機構を用いる。
我々の設計は、生物学的に伝達可能な先行を捉え、表現学習への過度な依存による過度な適合のリスクを避ける。
- 参考スコア(独自算出の注目度): 35.08045811156465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cold-start drug-target interaction (DTI) prediction focuses on interaction between novel drugs and proteins. Previous methods typically learn transferable interaction patterns between structures of drug and proteins to tackle it. However, insight from proteomics suggest that protein have multi-level structures and they all influence the DTI. Existing works usually represent protein with only primary structures, limiting their ability to capture interactions involving higher-level structures. Inspired by this insight, we propose ColdDTI, a framework attending on protein multi-level structure for cold-start DTI prediction. We employ hierarchical attention mechanism to mine interaction between multi-level protein structures (from primary to quaternary) and drug structures at both local and global granularities. Then, we leverage mined interactions to fuse structure representations of different levels for final prediction. Our design captures biologically transferable priors, avoiding the risk of overfitting caused by excessive reliance on representation learning. Experiments on benchmark datasets demonstrate that ColdDTI consistently outperforms previous methods in cold-start settings.
- Abstract(参考訳): コールドスタートドラッグ-ターゲット相互作用(DTI)予測は、新規薬物とタンパク質の相互作用に焦点を当てている。
従来の方法では、薬物とタンパク質の構造間の伝達可能な相互作用パターンを学習してそれに取り組むのが一般的だった。
しかし、プロテオミクスからの洞察から、タンパク質は多層構造を持ち、それらすべてがDTIに影響を与えることが示唆されている。
既存の研究は通常、一次構造のみを持つタンパク質を表現し、高いレベルの構造を含む相互作用を捉える能力を制限する。
この知見に触発されて、コールドスタートDTI予測のためのタンパク質多レベル構造に関与するフレームワークであるColdDTIを提案する。
局所およびグローバルな粒度の多レベルタンパク質構造(一次構造から第四次構造まで)と薬物構造との相互作用をマイニングするために,階層的注意機構を用いる。
そして、最終予測のために、採掘された相互作用を利用して異なるレベルの構造表現を融合する。
我々の設計は、生物学的に伝達可能な先行を捉え、表現学習への過度な依存による過度な適合のリスクを避ける。
ベンチマークデータセットの実験では、コールドDTIはコールドスタート設定で従来のメソッドを一貫して上回っていることが示されている。
関連論文リスト
- Hierarchical Multi-Label Contrastive Learning for Protein-Protein Interaction Prediction Across Organisms [2.399426243085768]
タンパク質間相互作用予測のための階層的コントラストフレームワークであるHIPPOを提案する。
提案手法は、タンパク質の機能クラス間の構造的関係をエミュレートする階層的コントラスト損失関数を含む。
ベンチマークデータセットの実験では、HIPPOが最先端のパフォーマンスを達成し、既存のメソッドを上回り、低データのレシエーションにおいて堅牢性を示すことが示されている。
論文 参考訳(メタデータ) (2025-07-03T15:41:04Z) - Bidirectional Hierarchical Protein Multi-Modal Representation Learning [4.682021474006426]
大規模タンパク質配列で事前訓練されたタンパク質言語モデル(pLM)は、配列ベースタスクにおいて大きな成功を収めた。
3次元構造情報を活用するために設計されたグラフニューラルネットワーク(GNN)は、タンパク質関連予測タスクにおいて有望な一般化を示している。
本稿では、よりリッチで包括的なタンパク質表現を捉えるために、双方向かつ階層的な(双階層的な)融合アプローチを提案する。
論文 参考訳(メタデータ) (2025-04-07T06:47:49Z) - MIN: Multi-channel Interaction Network for Drug-Target Interaction with Protein Distillation [64.4838301776267]
マルチチャネルインタラクションネットワーク(MIN)はドラッグ・ターゲット・インタラクション(DTI)を予測するための新しいフレームワークである
MINには、表現学習モジュールとマルチチャネルインタラクションモジュールが組み込まれている。
MINはDTI予測の強力なツールであるだけでなく、タンパク質結合部位の予測に関する新たな洞察も提供する。
論文 参考訳(メタデータ) (2024-11-23T05:38:36Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
タンパク質-タンパク質相互作用(PPI)の予測は、生物学的機能や疾患を理解する上で重要である。
PPI予測に対する従来の機械学習アプローチは、主に直接的な物理的相互作用に焦点を当てていた。
PPIに適したLLMを用いた新しいフレームワークProLLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T05:32:42Z) - PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for
Efficient and Generalizable Compound-Protein Interaction Prediction [63.50967073653953]
化合物-タンパク質相互作用予測は、合理的な薬物発見のための化合物-タンパク質相互作用のパターンと強度を予測することを目的としている。
既存のディープラーニングベースの手法では、タンパク質配列や構造が単一のモダリティしか利用していない。
CPI予測のためのマルチスケールタンパク質配列構造コントラストフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-13T03:51:10Z) - FragXsiteDTI: Revealing Responsible Segments in Drug-Target Interaction
with Transformer-Driven Interpretation [0.09236074230806578]
薬物-標的相互作用(DTI)予測は薬物発見に不可欠であるが、モデル解釈可能性の実現と性能の最適化には課題が続く。
DTI予測におけるこれらの課題に対処することを目的とした新しいトランスフォーマーモデルFragXsiteDTIを提案する。
FragXsiteDTIは、薬物分子断片とタンパク質ポケットを同時に利用する最初のDTIモデルである。
論文 参考訳(メタデータ) (2023-11-04T04:57:13Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
抗体配列構造共設計のための階層的訓練パラダイム(HTP)を提案する。
HTPは4段階の訓練段階から構成され、それぞれが特定のタンパク質のモダリティに対応する。
実証実験により、HTPは共同設計問題において新しい最先端性能を設定できることが示されている。
論文 参考訳(メタデータ) (2023-10-30T02:39:15Z) - Multimodal Pre-Training Model for Sequence-based Prediction of
Protein-Protein Interaction [7.022012579173686]
タンパク質モデルによる効果的な表現の学習は、タンパク質とタンパク質の相互作用において重要である。
PPIの事前学習モデルのほとんどは配列ベースであり、自然言語処理で使用される言語モデルをアミノ酸配列に導入している。
本稿では, 配列, 構造, 機能という3つのモーダル性を持つマルチモーダルタンパク質事前学習モデルを提案する。
論文 参考訳(メタデータ) (2021-12-09T10:21:52Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
Deep Relationsは物理にインスパイアされた、本質的に説明可能なアーキテクチャを持つディープリレーショナルネットワークである。
それは最先端技術に対する優れた解釈可能性を示している。
接触予測 9.5, 16.9, 19.3, 5.7 倍の AUPRC をテスト用、複合ユニク、タンパク質ユニク、両ユニクセットで強化する。
論文 参考訳(メタデータ) (2019-12-29T00:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。