論文の概要: Domain Generalization: A Tale of Two ERMs
- arxiv url: http://arxiv.org/abs/2510.04441v1
- Date: Mon, 06 Oct 2025 02:17:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.656553
- Title: Domain Generalization: A Tale of Two ERMs
- Title(参考訳): ドメインの一般化:2つのEMMの物語
- Authors: Yilun Zhu, Naihao Deng, Naichen Shi, Aditya Gangrade, Clayton Scott,
- Abstract要約: 特徴ベクトルをドメイン固有情報で拡張したドメインインフォーム型ERM'は、EMMのプール性能に優れることを示す。
これらの主張は、言語と視覚のタスクに関する理論的枠組みと実験によって支持されている。
- 参考スコア(独自算出の注目度): 22.836459792619014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain generalization (DG) is the problem of generalizing from several distributions (or domains), for which labeled training data are available, to a new test domain for which no labeled data is available. A common finding in the DG literature is that it is difficult to outperform empirical risk minimization (ERM) on the pooled training data. In this work, we argue that this finding has primarily been reported for datasets satisfying a \emph{covariate shift} assumption. When the dataset satisfies a \emph{posterior drift} assumption instead, we show that ``domain-informed ERM,'' wherein feature vectors are augmented with domain-specific information, outperforms pooling ERM. These claims are supported by a theoretical framework and experiments on language and vision tasks.
- Abstract(参考訳): ドメイン一般化(Domain Generalization、DG)は、ラベル付きトレーニングデータが利用可能な複数のディストリビューション(またはドメイン)から、ラベル付きデータが使用できない新しいテストドメインに一般化する問題である。
DG文献でよく見られる発見は、プールドトレーニングデータ上で経験的リスク最小化(ERM)を上回りにくいことである。
本稿では,この発見が,emph{covariate shift}仮定を満たすデータセットに対して主に報告されていることを論じる。
データセットが代わりに \emph{posterior drift} 仮定を満たすと、'ドメインインフォームド ERM,'' が示され、特徴ベクトルはドメイン固有の情報で拡張され、プールの ERM よりも優れる。
これらの主張は、言語と視覚のタスクに関する理論的枠組みと実験によって支持されている。
関連論文リスト
- GenGMM: Generalized Gaussian-Mixture-based Domain Adaptation Model for Semantic Segmentation [0.9626666671366837]
一般化ガウス混合(GenGMM)ドメイン適応モデルを導入する。
実験は我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-10-21T20:21:09Z) - Cross Domain Generative Augmentation: Domain Generalization with Latent
Diffusion Models [11.309433257851122]
Cross Domain Generative Augmentation (CDGA)は、すべてのドメイン間のギャップを埋めるために合成画像を生成する。
我々は,CDGAがDomainbedベンチマークでSOTA DG法より優れていることを示す。
論文 参考訳(メタデータ) (2023-12-08T21:52:00Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - ERM++: An Improved Baseline for Domain Generalization [69.80606575323691]
経験的リスク最小化(ERM)は、適切に調整された場合、最も複雑なドメイン一般化(DG)手法より優れている。
ERM++は以前のEMMベースラインと比較してDGのパフォーマンスを5%以上改善している。
論文 参考訳(メタデータ) (2023-04-04T17:31:15Z) - Probable Domain Generalization via Quantile Risk Minimization [90.15831047587302]
ドメインの一般化は、目に見えないテスト分布でうまく機能する予測子を求める。
我々はDGのための新しい確率的フレームワークを提案し、高い確率でよく動作する予測器を学習することを目指している。
論文 参考訳(メタデータ) (2022-07-20T14:41:09Z) - Improving Multi-Domain Generalization through Domain Re-labeling [31.636953426159224]
本稿では,事前特定ドメインラベルと一般化性能の関連性について検討する。
マルチドメイン一般化のための一般的なアプローチであるMulDEnsを導入し,ERMをベースとした深層アンサンブルバックボーンを用いた。
我々は、MulDEnsがデータセット固有の拡張戦略やトレーニングプロセスの調整を必要としないことを示す。
論文 参考訳(メタデータ) (2021-12-17T23:21:50Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。