論文の概要: SFANet: Spatial-Frequency Attention Network for Deepfake Detection
- arxiv url: http://arxiv.org/abs/2510.04630v1
- Date: Mon, 06 Oct 2025 09:35:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.781374
- Title: SFANet: Spatial-Frequency Attention Network for Deepfake Detection
- Title(参考訳): SFANet:ディープフェイク検出のための空間周波数注意ネットワーク
- Authors: Vrushank Ahire, Aniruddh Muley, Shivam Zample, Siddharth Verma, Pranav Menon, Surbhi Madan, Abhinav Dhall,
- Abstract要約: より優れた検出精度とロバスト性を実現するための新しいアンサンブルフレームワークを提案する。
提案手法は,革新的なデータ分割,シーケンシャルトレーニング,周波数分割,パッチベースの注意,顔分割技術を導入している。
本モデルはDFWild-Cupデータセットでテストした場合,最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 6.387788094718588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting manipulated media has now become a pressing issue with the recent rise of deepfakes. Most existing approaches fail to generalize across diverse datasets and generation techniques. We thus propose a novel ensemble framework, combining the strengths of transformer-based architectures, such as Swin Transformers and ViTs, and texture-based methods, to achieve better detection accuracy and robustness. Our method introduces innovative data-splitting, sequential training, frequency splitting, patch-based attention, and face segmentation techniques to handle dataset imbalances, enhance high-impact regions (e.g., eyes and mouth), and improve generalization. Our model achieves state-of-the-art performance when tested on the DFWild-Cup dataset, a diverse subset of eight deepfake datasets. The ensemble benefits from the complementarity of these approaches, with transformers excelling in global feature extraction and texturebased methods providing interpretability. This work demonstrates that hybrid models can effectively address the evolving challenges of deepfake detection, offering a robust solution for real-world applications.
- Abstract(参考訳): 近年のディープフェイク(ディープフェイク)の増加に伴い、操作されたメディアの検出が急務になっている。
既存のアプローチのほとんどは、さまざまなデータセットと生成テクニックをまたいだ一般化に失敗している。
そこで我々は,Swin TransformerやViTsといったトランスフォーマーアーキテクチャの強みとテクスチャベースの手法を組み合わせて,より優れた検出精度とロバスト性を実現する,新しいアンサンブルフレームワークを提案する。
提案手法では,データ分割,シーケンシャルトレーニング,周波数分割,パッチベースアテンション,顔分割技術を導入し,データセットの不均衡を解消し,高インパクト領域(例えば目と口)を強化し,一般化を向上する。
本モデルでは,8つのディープフェイクデータセットの多種多様なサブセットであるDFWild-Cupデータセットでテストすることで,最先端のパフォーマンスを実現する。
アンサンブルの利点は、グローバルな特徴抽出に優れたトランスフォーマーと、解釈可能性を提供するテクスチャベースの手法である。
この研究は、ハイブリッドモデルがディープフェイク検出の進化する課題に効果的に対処できることを示し、現実世界のアプリケーションに堅牢なソリューションを提供する。
関連論文リスト
- Robust AI-Generated Face Detection with Imbalanced Data [10.360215701635674]
現在のディープフェイク検出技術は、ローカルアーティファクトに焦点を当てたCNNベースの手法から、CLIPのようなビジョントランスフォーマーやマルチモーダルモデルを使ったより高度なアプローチへと進化してきた。
近年の進歩にもかかわらず、最先端のディープフェイク検出器は、新しい生成モデルからの分布シフトを扱う上で大きな課題に直面している。
動的損失再重み付けとランキングに基づく最適化を組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-04T17:02:10Z) - HFMF: Hierarchical Fusion Meets Multi-Stream Models for Deepfake Detection [4.908389661988192]
HFMFは総合的な2段階のディープフェイク検出フレームワークである。
視覚変換器と畳み込みネットを階層的特徴融合機構を通じて統合する。
私たちのアーキテクチャは、多様なデータセットベンチマークで優れたパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2025-01-10T00:20:29Z) - Leveraging Mixture of Experts for Improved Speech Deepfake Detection [53.69740463004446]
スピーチのディープフェイクは、個人のセキュリティとコンテンツの信頼性に重大な脅威をもたらす。
本研究では,Mixture of Expertsアーキテクチャを用いた音声深度検出性能の向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-24T13:24:03Z) - Towards More General Video-based Deepfake Detection through Facial Component Guided Adaptation for Foundation Model [16.69101880602321]
一般化ビデオに基づくDeepfake検出のためのサイドネットワークベースのデコーダを提案する。
また、空間学習の一般化性を高めるために、FCG(Facial Component Guidance)を導入する。
提案手法は,Deepfakeデータセットに挑戦する上で有望な一般化性を示す。
論文 参考訳(メタデータ) (2024-04-08T14:58:52Z) - Diffusion Deepfake [41.59597965760673]
生成AIの最近の進歩は、主に拡散モデルを通じて、現実世界のディープフェイク検出において大きな課題を呈している。
画像の詳細、多様なコンテンツ、そして一般大衆への幅広いアクセス性におけるリアリズムの増加は、これらの洗練されたディープフェイクの識別を複雑にしている。
本稿では,最先端拡散モデルにより生成された2つの広範囲なディープフェイクデータセットを紹介する。
論文 参考訳(メタデータ) (2024-04-02T02:17:50Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Self-Supervised Graph Transformer for Deepfake Detection [1.8133635752982105]
ディープフェイク検出手法は、与えられたデータセット内の偽造を認識できる有望な結果を示している。
ディープフェイク検出システムは、一般的な検出性能を保証するために、偽造タイプ、外観、品質に欠かせないままでいなければならない。
本研究では、自己教師付き事前学習モデルを利用して、例外的な一般化能力を実現するディープフェイク検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-27T17:22:41Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
現在のディープフェイク生成法では、偽画像やビデオの周波数スペクトルに識別的アーティファクトが残されている。
MD-CSDNetwork(MD-CSDNetwork)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T14:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。