論文の概要: Noise or Signal? Deconstructing Contradictions and An Adaptive Remedy for Reversible Normalization in Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2510.04667v1
- Date: Mon, 06 Oct 2025 10:22:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.799714
- Title: Noise or Signal? Deconstructing Contradictions and An Adaptive Remedy for Reversible Normalization in Time Series Forecasting
- Title(参考訳): 騒音か信号か? 時系列予測における可逆正規化のためのコントラクションの分解と適応的対策
- Authors: Fanzhe Fu, Yang Yang,
- Abstract要約: RevINは、単純な線形モデルで時系列予測における最先端のパフォーマンスを実現するための重要な技術である。
本稿では,4つの基礎となる理論的矛盾を同定することにより,様々な正規化戦略の難解化性能を分解する。
- 参考スコア(独自算出の注目度): 4.212879006865343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reversible Instance Normalization (RevIN) is a key technique enabling simple linear models to achieve state-of-the-art performance in time series forecasting. While replacing its non-robust statistics with robust counterparts (termed R$^2$-IN) seems like a straightforward improvement, our findings reveal a far more complex reality. This paper deconstructs the perplexing performance of various normalization strategies by identifying four underlying theoretical contradictions. Our experiments provide two crucial findings: first, the standard RevIN catastrophically fails on datasets with extreme outliers, where its MSE surges by a staggering 683\%. Second, while the simple R$^2$-IN prevents this failure and unexpectedly emerges as the best overall performer, our adaptive model (A-IN), designed to test a diagnostics-driven heuristic, unexpectedly suffers a complete and systemic failure. This surprising outcome uncovers a critical, overlooked pitfall in time series analysis: the instability introduced by a simple or counter-intuitive heuristic can be more damaging than the statistical issues it aims to solve. The core contribution of this work is thus a new, cautionary paradigm for time series normalization: a shift from a blind search for complexity to a diagnostics-driven analysis that reveals not only the surprising power of simple baselines but also the perilous nature of naive adaptation.
- Abstract(参考訳): RevIN(Reversible Instance Normalization)は、単純な線形モデルによる時系列予測における最先端のパフォーマンスの実現を可能にする重要な技術である。
R$^2$-IN(R$^2$-IN)と推定される、ロバストな統計を頑健な統計に置き換えることは、単純な改善のように思えるが、我々の発見は、はるかに複雑な現実を明らかにしている。
本稿では,4つの基礎となる理論的矛盾を同定することにより,様々な正規化戦略の難解化性能を分解する。
まず、標準のRevINは、極端な外れ値を持つデータセットで破滅的に失敗する。
第二に、単純なR$^2$-INは、この失敗を防ぎ、最も優れた総合的なパフォーマーとして予期せず出現するのに対して、我々の適応モデル(A-IN)は、診断駆動のヒューリスティックなヒューリスティックをテストするために設計され、予期せず完全かつ体系的な失敗を被る。
この驚くべき結果は、時系列分析において批判的で見落とされがちな落とし穴を明らかにしている。単純または直観的ヒューリスティックによってもたらされる不安定性は、解決しようとする統計的問題よりも、より有害である。
この研究の中核的な貢献は、時系列正規化の新しい、注意深いパラダイムである:複雑さの盲点探索から診断駆動分析へのシフトは、単純なベースラインの驚くべき力だけでなく、ナイーブ適応の危険な性質も明らかにする。
関連論文リスト
- Revisiting Multivariate Time Series Forecasting with Missing Values [74.56971641937771]
現実の時系列では欠落値が一般的である。
現在のアプローチでは、計算モジュールを使用して、不足した値を補う、計算済みの予測フレームワークが開発されている。
このフレームワークは、致命的な問題を見落としている: 欠落した値に対して基礎的な真理は存在せず、予測精度を劣化させる可能性のあるエラーの影響を受けやすいようにしている。
本稿では,Information Bottleneck原則に基づく新しいフレームワークであるConsistency-Regularized Information Bottleneck(CRIB)を紹介する。
論文 参考訳(メタデータ) (2025-09-27T20:57:48Z) - Beyond Model Ranking: Predictability-Aligned Evaluation for Time Series Forecasting [18.018179328110048]
スペクトルコヒーレンスに基づく予測可能性整合診断フレームワークを提案する。
予測可能性ドリフト(predictability drift, 予測可能性ドリフト)の最初の体系的な証拠として, タスクの予測困難度が時間とともに急激に変化することを示す。
複雑なモデルは予測可能性の低いデータより優れているのに対し、線形モデルは予測可能なタスクに非常に効果的である。
論文 参考訳(メタデータ) (2025-09-27T02:56:06Z) - Towards Foundation Models for Zero-Shot Time Series Anomaly Detection: Leveraging Synthetic Data and Relative Context Discrepancy [33.68487894996624]
時系列異常検出(TSAD)は重要な課題であるが、見えないデータに一般化するモデルを開発することは大きな課題である。
我々は、新しい事前学習パラダイムの上に構築されたTSADの新たな基盤モデルであるtextttTimeRCDを紹介した。
textttTimeRCD はゼロショット TSAD において,既存の汎用および異常固有の基盤モデルよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2025-09-25T14:05:15Z) - Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning [53.25336975467293]
パープレキシティや自己整合性などの手法の第一理論誤差分解解析について述べる。
パープレキシティ法は、適切な整合関数が存在しないため、かなりのモデル誤差に悩まされる。
本稿では、自己整合性とパープレキシティを統合したReasoning-Pruning Perplexity Consistency(RPC)と、低確率推論経路を排除したReasoning Pruningを提案する。
論文 参考訳(メタデータ) (2025-02-01T18:09:49Z) - Benign Overfitting in Out-of-Distribution Generalization of Linear Models [19.203753135860016]
我々は、アウト・オブ・ディストリビューション(OOD)体制における良心過剰の理解に向けて、最初の一歩を踏み出した。
我々は、標準的な隆起回帰において良性過剰適合が生じることを証明する非漸近保証を提供する。
また、より一般的な目標共分散行列の族についても理論的結果を示す。
論文 参考訳(メタデータ) (2024-12-19T02:47:39Z) - High-dimensional logistic regression with missing data: Imputation, regularization, and universality [7.167672851569787]
我々は高次元リッジ規則化ロジスティック回帰について検討する。
予測誤差と推定誤差の両方を正確に評価する。
論文 参考訳(メタデータ) (2024-10-01T21:41:21Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
まず、オフラインRLにおけるQ値推定のばらつきの主な原因として、基本パターン、自己励起を同定する。
そこで本研究では,Q-network の学習における進化特性を測定するために,SEEM(Self-Excite Eigen Value Measure)尺度を提案する。
われわれの理論では、訓練が早期に発散するかどうかを確実に決定できる。
論文 参考訳(メタデータ) (2023-10-06T17:57:44Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
不変リスク最小化(Invariant Risk Minimization)は、データの深い不変性を学ぶという考え方に基づく目標である。
我々は、IRMの目的に基づく分類の最初の分析と、最近提案されたこれらの代替案について、かなり自然で一般的なモデルで分析する。
IRMは、テストデータがトレーニング分布と十分に類似していない限り、破滅的に失敗する可能性がある。
論文 参考訳(メタデータ) (2020-10-12T14:54:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。