論文の概要: Flow Matching for Conditional MRI-CT and CBCT-CT Image Synthesis
- arxiv url: http://arxiv.org/abs/2510.04823v1
- Date: Mon, 06 Oct 2025 14:07:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.890586
- Title: Flow Matching for Conditional MRI-CT and CBCT-CT Image Synthesis
- Title(参考訳): 条件付きMRI-CTとCBCT-CT画像合成のためのフローマッチング
- Authors: Arnela Hadzic, Simon Johannes Joham, Martin Urschler,
- Abstract要約: Flow Matching frameworkは、MRIまたはCBCT画像から合成CTを生成するために使用される。
3つの解剖学的領域にわたるMRI sCT と CBCT sCT のモデルを訓練する。
その結果,グローバルな解剖学的構造を正確に再構築できることが示唆された。
今後の研究は、パッチベースのトレーニングとラテントスペースフローモデルを使って、解像度と局所的な構造的忠実性を改善することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generating synthetic CT (sCT) from MRI or CBCT plays a crucial role in enabling MRI-only and CBCT-based adaptive radiotherapy, improving treatment precision while reducing patient radiation exposure. To address this task, we adopt a fully 3D Flow Matching (FM) framework, motivated by recent work demonstrating FM's efficiency in producing high-quality images. In our approach, a Gaussian noise volume is transformed into an sCT image by integrating a learned FM velocity field, conditioned on features extracted from the input MRI or CBCT using a lightweight 3D encoder. We evaluated the method on the SynthRAD2025 Challenge benchmark, training separate models for MRI $\rightarrow$ sCT and CBCT $\rightarrow$ sCT across three anatomical regions: abdomen, head and neck, and thorax. Validation and testing were performed through the challenge submission system. The results indicate that the method accurately reconstructs global anatomical structures; however, preservation of fine details was limited, primarily due to the relatively low training resolution imposed by memory and runtime constraints. Future work will explore patch-based training and latent-space flow models to improve resolution and local structural fidelity.
- Abstract(参考訳): MRIやCBCTから合成CT(sCT)を生成することは、MRIのみおよびCBCTをベースとした適応放射線治療を可能にし、患者の放射線被曝を減らすとともに治療精度を向上させる上で重要な役割を担っている。
この課題に対処するために、我々はFMの高品質な画像生成における効率性を示す最近の研究を動機とした、完全な3次元フローマッチング(FM)フレームワークを採用した。
提案手法では,3Dエンコーダを用いて入力MRIやCBCTから抽出した特徴に基づいて,学習したFM速度場を統合することにより,ガウス雑音量をsCT画像に変換する。
腹部,頭頸部,胸部3領域にわたるMRI $\rightarrow$ sCT と CBCT $\rightarrow$ sCT の訓練を行った。
検証とテストは課題提出システムを通じて実施された。
その結果, 本手法はグローバルな解剖学的構造を正確に再構築するが, メモリや実行時の制約による訓練が比較的少ないため, 細部保存は限られていた。
今後の研究は、パッチベースのトレーニングとラテントスペースフローモデルを使って、解像度と局所的な構造的忠実性を改善することである。
関連論文リスト
- EqDiff-CT: Equivariant Conditional Diffusion model for CT Image Synthesis from CBCT [43.92108185590778]
画像誘導放射線療法(IGRT)に広く用いられているコーンビームCT(CBCT)
CBCTから高品質なCT画像を生成するために,EqDiff-CTという新しい拡散型条件生成モデルを提案する。
論文 参考訳(メタデータ) (2025-09-26T05:51:59Z) - 3D Wavelet Latent Diffusion Model for Whole-Body MR-to-CT Modality Translation [13.252652406393205]
既存の全身画像のためのMR-to-CT法では、生成したCT画像と入力したMR画像との空間的アライメントが低くなることが多い。
本稿では,これらの制約に対処する新しい3次元ウェーブレット遅延拡散モデル(3D-WLDM)を提案する。
エンコーダ・デコーダアーキテクチャにWavelet Residual Moduleを組み込むことで,画像空間と潜伏空間をまたいだ微細な特徴の捕捉と再構築が促進される。
論文 参考訳(メタデータ) (2025-07-14T06:17:05Z) - JSover: Joint Spectrum Estimation and Multi-Material Decomposition from Single-Energy CT Projections [45.14515691206885]
多物質分解(MMD)は、ヒト体内の組織組成を定量的に再構築することを可能にする。
従来のMDDは、通常、スペクトルCTスキャナーと事前に測定したX線エネルギースペクトルを必要とし、臨床応用性を大幅に制限する。
本稿では,多材料構成を共同で再構成し,SECT投影から直接エネルギースペクトルを推定する一段階SEMMDフレームワークであるJSoverを提案する。
論文 参考訳(メタデータ) (2025-05-12T23:32:21Z) - ZECO: ZeroFusion Guided 3D MRI Conditional Generation [11.645873358288648]
ZECOはZeroFusionでガイドされた3D MRI条件生成フレームワークである。
対応する3Dセグメンテーションマスクを備えた高忠実度MRI画像の抽出、圧縮、生成を行う。
ZECOは、脳MRIデータセットの定量的および質的な評価において、最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2025-03-24T00:04:52Z) - Synthetic CT image generation from CBCT: A Systematic Review [44.01505745127782]
深層学習法を用いたコーンビームCT(CBCT)データから合成CT(sCT)画像を生成することは,放射線腫瘍学における重要な進歩である。
sCT 生成における深層学習アプローチの頻度を明らかにするため,35 件の関連研究を同定,解析した。
論文 参考訳(メタデータ) (2025-01-22T13:54:07Z) - DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays [41.393567374399524]
条件拡散過程として超スパースX線からのCT再構成をモデル化したDiffuX2CTを提案する。
これにより、DiffuX2CTは2次元X線から3次元構造情報を復元できる構造制御可能な再構成を実現する。
コントリビューションとして,LumbarVと呼ばれる実世界の腰椎CTデータセットを新しいベンチマークとして収集し,X線からのCT再構成の臨床的意義と性能を検証した。
論文 参考訳(メタデータ) (2024-07-18T14:20:04Z) - UMedNeRF: Uncertainty-aware Single View Volumetric Rendering for Medical
Neural Radiance Fields [38.62191342903111]
生成した放射場に基づく不確実性を考慮したMedNeRF(UMedNeRF)ネットワークを提案する。
我々は,CTプロジェクションレンダリングの結果を1つのX線で示し,生成した放射場に基づく他の手法との比較を行った。
論文 参考訳(メタデータ) (2023-11-10T02:47:15Z) - Synthetic CT Generation from MRI using 3D Transformer-based Denoising
Diffusion Model [2.232713445482175]
磁気共鳴イメージング(MRI)を用いたシンセティックCT(sCT)は放射線治療計画を簡単にする。
本稿では,MRIを高品質なsCTに変換するためのMRI-to-CT変換器を用いた denoising diffusion probabilistic model (MC-DDPM)を提案する。
論文 参考訳(メタデータ) (2023-05-31T00:32:00Z) - Joint Rigid Motion Correction and Sparse-View CT via Self-Calibrating
Neural Field [37.86878619100209]
NeRFは自己教師型ディープラーニングフレームワークとしてSparse-View (SV) CT再構成問題で広く注目を集めている。
既存のNeRFベースのSVCT法は、CT取得中に全く相対的な動きがないと厳密に仮定する。
本研究は, 剛性運動崩壊SV測定からアーチファクトフリーなイメージを復元する自己校正型ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-23T13:55:07Z) - Synthetic CT Skull Generation for Transcranial MR Imaging-Guided Focused
Ultrasound Interventions with Conditional Adversarial Networks [5.921808547303054]
経頭蓋MRIガイド下集束超音波(TcMRgFUS)は頭蓋骨内の音をMRIガイド下において非侵襲的に小さな領域に集束する治療用超音波法である。
頭蓋骨を通して超音波を的確に標的にするためには、送信波が目標領域に建設的に干渉する必要がある。
論文 参考訳(メタデータ) (2022-02-21T11:34:29Z) - Frequency-Supervised MR-to-CT Image Synthesis [23.47506325756089]
本稿では磁気共鳴(MR)画像から合成CT画像を生成する。
既存のアプローチはすべて共通の制限を共有しており、CT画像の高周波部分と周辺を再構成する。
我々は,高頻度MR-CT画像再構成を明示的に向上するために,周波数教師付きディープネットワークを導入する。
論文 参考訳(メタデータ) (2021-07-19T15:18:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。