論文の概要: Boomerang Distillation Enables Zero-Shot Model Size Interpolation
- arxiv url: http://arxiv.org/abs/2510.05064v1
- Date: Mon, 06 Oct 2025 17:41:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:53:00.026606
- Title: Boomerang Distillation Enables Zero-Shot Model Size Interpolation
- Title(参考訳): ボメラン蒸留によるゼロショットモデルサイズ補間
- Authors: Sara Kangaslahti, Nihal V. Nayak, Jonathan Geuter, Marco Fumero, Francesco Locatello, David Alvarez-Melis,
- Abstract要約: 既存のアプローチは、各サイズを個別にトレーニングすることでモデルファミリを構築する。
本研究では,ブーメラン蒸留と呼ばれる新しい現象を同定する。
最初は小さな学生に蒸留し、その後、教師層のブロックを学生に組み込むことで、段階的に中間サイズのモデルを再構築する。
- 参考スコア(独自算出の注目度): 30.74896485280105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are typically deployed under diverse memory and compute constraints. Existing approaches build model families by training each size independently, which is prohibitively expensive and provides only coarse-grained size options. In this work, we identify a novel phenomenon that we call boomerang distillation: starting from a large base model (the teacher), one first distills down to a small student and then progressively reconstructs intermediate-sized models by re-incorporating blocks of teacher layers into the student without any additional training. This process produces zero-shot interpolated models of many intermediate sizes whose performance scales smoothly between the student and teacher, often matching or surpassing pretrained or distilled models of the same size. We further analyze when this type of interpolation succeeds, showing that alignment between teacher and student through pruning and distillation is essential. Boomerang distillation thus provides a simple and efficient way to generate fine-grained model families, dramatically reducing training cost while enabling flexible adaptation across deployment environments. The code and models are available at https://github.com/dcml-lab/boomerang-distillation.
- Abstract(参考訳): 大規模言語モデル(LLM)は通常、多様なメモリと計算制約の下でデプロイされる。
既存のアプローチは、各サイズを個別にトレーニングすることでモデルファミリを構築する。
本研究は,ブーメラン蒸留と呼ばれる新しい現象を同定し,まず大ベースモデル(教師)から小学生に蒸留し,その後,追加の訓練を伴わずに教師層ブロックを学生に組み込むことで,段階的に中間規模モデルを再構築する。
このプロセスは、学生と教師の間でパフォーマンスがスムーズにスケールする多くの中間サイズのゼロショット補間モデルを生成する。
さらに, この種の補間がいつ成功するかを分析し, プルーニングと蒸留を通した教師と生徒の整合が不可欠であることを示す。
これにより、ボメラン蒸留は、粒度の細かいモデルファミリを生成するためのシンプルで効率的な方法を提供し、訓練コストを劇的に削減し、デプロイ環境全体にわたって柔軟な適応を可能にする。
コードとモデルはhttps://github.com/dcml-lab/boomerang-distillationで公開されている。
関連論文リスト
- Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation [64.15918654558816]
教師表現のフィルタリングと重み付けのための自己蒸留(SSD)訓練戦略を導入し,タスク関連表現のみから抽出する。
UCR Archiveのウェアラブル/バイオサインデータセット、HARデータセット、画像分類データセットなどの実世界の感情コンピューティングに関する実験結果は、提案したSSD手法が最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2025-04-19T14:08:56Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - POA: Pre-training Once for Models of All Sizes [33.72644336390202]
我々はPOA(Pre-Treating Once for All)と呼ばれる新しい三枝型自己教師型トレーニングフレームワークを提案する。
我々のアプローチは、革新的な弾性的な学生分岐を近代的な自己蒸留パラダイムに導入する。
ViT、Swin Transformer、ResNetのバックボーンを使って最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-08-02T06:13:29Z) - On the Surprising Efficacy of Distillation as an Alternative to Pre-Training Small Models [7.062887337934677]
我々は、小モデルがその利点を享受するために事前学習のコストを吸収する必要がないことを提案する。
事前訓練されたモデルからタスクを蒸留すると、そのタスクで事前訓練されたり微調整されたりした場合、小さなモデルで達成される性能を達成または超えることが観察された。
論文 参考訳(メタデータ) (2024-04-04T07:38:11Z) - Reusing Pretrained Models by Multi-linear Operators for Efficient
Training [65.64075958382034]
大規模なモデルをスクラッチからトレーニングすることは、通常、かなりの量のリソースを必要とする。
bert2BERT や LiGO といった最近の研究は、大規模なモデルを初期化するために、小さな事前訓練されたモデルを再利用している。
本稿では,対象モデルの各重みを事前学習モデルの全重みに線形に相関させる手法を提案する。
論文 参考訳(メタデータ) (2023-10-16T06:16:47Z) - Just CHOP: Embarrassingly Simple LLM Compression [27.64461490974072]
LLM(Large Language Model)は、非並列の少数およびゼロショット推論機能を実現するが、高い計算フットプリントを実現する。
拡張言語モデル事前学習と組み合わせた単純なレイヤプルーニングは、7Bスケールでモデルの構造的および半構造化された圧縮に対して最先端の結果をもたらすことを示す。
また,より小さなBERT型モデルのタスク非依存圧縮において非常に効果的であった蒸留が,我々の単純な刈り取り技術に対して非効率になることを示す。
論文 参考訳(メタデータ) (2023-05-24T08:18:35Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [47.432215933099016]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
知識蒸留はモデル圧縮の一般的な方法です。
現在の方法は、蒸留全体の教師モデルに固定重量を割り当てます。
既存のメソッドのほとんどは、すべての教師モデルに等しい重みを割り当てます。
本論文では,学習例の複雑性や生徒モデル能力の違いから,教師モデルとの違いを学習することで,生徒モデルの蒸留性能の向上が期待できることを考察する。
論文 参考訳(メタデータ) (2020-12-11T08:56:39Z) - MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression
of Pre-Trained Transformers [117.67424061746247]
本稿では,大規模トランスフォーマーをベースとした事前学習モデルの簡易かつ効率的な圧縮手法を提案する。
本稿では,教師の最後のトランスフォーマー層の自己保持モジュールを蒸留することを提案する。
実験結果から, 単言語モデルでは, 学生モデルのパラメータサイズの違いにより, 最先端のベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-02-25T15:21:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。