論文の概要: Integrating Bayesian methods with neural network--based model predictive control: a review
- arxiv url: http://arxiv.org/abs/2510.05338v1
- Date: Mon, 06 Oct 2025 20:04:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:07.967693
- Title: Integrating Bayesian methods with neural network--based model predictive control: a review
- Title(参考訳): ベイジアン法とニューラルネットワークを用いたモデル予測制御の統合:レビュー
- Authors: Asli Karacelik,
- Abstract要約: 本稿では、ニューラルネットワークに基づくモデリング、制御設計、不確実性定量化に焦点を当てる。
ベイジアンアプローチは、MPCにおける不確実性を捕捉し、伝播するためにますます採用されているが、報告された性能の上昇は依然として断片化されている。
我々は,MPCにおけるベイズ的手法の有効性を厳格に判定するために,標準化されたベンチマーク,アブレーション研究,透過的な報告を論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this review, we assess the use of Bayesian methods in model predictive control (MPC), focusing on neural-network-based modeling, control design, and uncertainty quantification. We systematically analyze individual studies and how they are implemented in practice. While Bayesian approaches are increasingly adopted to capture and propagate uncertainty in MPC, reported gains in performance and robustness remain fragmented, with inconsistent baselines and limited reliability analyses. We therefore argue for standardized benchmarks, ablation studies, and transparent reporting to rigorously determine the effectiveness of Bayesian techniques for MPC.
- Abstract(参考訳): 本稿では,ニューラルネットワークに基づくモデリング,制御設計,不確実性定量化に着目し,モデル予測制御(MPC)におけるベイズ法の適用性を評価する。
我々は,個々の研究の体系的分析と実施方法について検討する。
ベイジアンアプローチは、MPCにおける不確実性を捕捉し、伝播するためにますます採用されているが、報告された性能とロバスト性は、一貫性のないベースラインと限られた信頼性解析によって断片化されている。
そこで我々は,MPCに対するベイズ的手法の有効性を厳格に判定するために,標準化されたベンチマーク,アブレーション研究,透過的な報告を論じる。
関連論文リスト
- TULiP: Test-time Uncertainty Estimation via Linearization and Weight Perturbation [11.334867025651233]
OOD検出のための理論駆動型不確実性推定器TULiPを提案する。
本手法では,収束前にネットワークに適用される仮説的摂動を考察する。
提案手法は,特に近分布試料について,最先端の性能を示す。
論文 参考訳(メタデータ) (2025-05-22T17:16:41Z) - Confidence in Large Language Model Evaluation: A Bayesian Approach to Limited-Sample Challenges [13.526258635654882]
本研究では,大規模言語モデル(LLM)能力評価のためのベイズ的アプローチを提案する。
モデル機能を潜時変数として扱い、キュレートされたクエリセットを利用して識別応答を誘導する。
GPTシリーズモデルを用いた実験により,提案手法は従来の評価手法よりも優れた識別性が得られることが示された。
論文 参考訳(メタデータ) (2025-04-30T04:24:50Z) - Nonlinear sparse variational Bayesian learning based model predictive control with application to PEMFC temperature control [16.703859991393568]
本研究は非線形システムのための非線形スパース変分学習に基づくMPC(NSVB-MPC)を開発する。
変分推論はNSVB-MPCによって予測精度を評価し、システムの不確実性を定量化するために必要な修正を行う。
論文 参考訳(メタデータ) (2024-04-15T07:30:26Z) - Self-Improving Interference Management Based on Deep Learning With
Uncertainty Quantification [10.403513606082067]
本稿では,無線通信に適した自己改善型干渉管理フレームワークを提案する。
提案手法は,従来の最適化アルゴリズムに固有の計算課題に対処する。
私たちのフレームワークのブレークスルーは、データ駆動モデルに固有の制限を認識することです。
論文 参考訳(メタデータ) (2024-01-24T03:28:48Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
本研究では, (e)NMPCの一部として最適性能を示すために, Koopman シュロゲートモデルの強化学習法を提案する。
エンドツーエンドトレーニングモデルは,(e)NMPCにおけるシステム識別を用いてトレーニングしたモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-03T10:21:53Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
ディープニューラルネットワークのような複雑なモデルによる不確実性推定は困難であり、信頼性が低い。
我々は,サポート外状態動作の値関数を正規化するモデルベースオフラインRLアルゴリズムCOMBOを開発した。
従来のオフラインモデルフリーメソッドやモデルベースメソッドと比べて、comboは一貫してパフォーマンスが良いことが分かりました。
論文 参考訳(メタデータ) (2021-02-16T18:50:32Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。