論文の概要: EEG-Based Acute Pain Classification: Machine Learning Model Comparison and Real-Time Clinical Feasibility
- arxiv url: http://arxiv.org/abs/2510.05511v1
- Date: Tue, 07 Oct 2025 01:57:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:08.061983
- Title: EEG-Based Acute Pain Classification: Machine Learning Model Comparison and Real-Time Clinical Feasibility
- Title(参考訳): 脳波による急性痛分類:機械学習モデルの比較とリアルタイム臨床応用の可能性
- Authors: Aavid Mathrawala, Dhruv Kurup, Josie Lau,
- Abstract要約: 病院内の現在の痛み評価は、しばしば自己申告または非特異的なEKGバイタルサインに依存している。
脳波(EEG)は、脳活動を測定する非侵襲的な方法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current pain assessment within hospitals often relies on self-reporting or non-specific EKG vital signs. This system leaves critically ill, sedated, and cognitively impaired patients vulnerable to undertreated pain and opioid overuse. Electroencephalography (EEG) offers a noninvasive method of measuring brain activity. This technology could potentially be applied as an assistive tool to highlight nociceptive processing in order to mitigate this issue. In this study, we compared machine learning models for classifying high-pain versus low/no-pain EEG epochs using data from fifty-two healthy adults exposed to laser-evoked pain at three intensities (low, medium, high). Each four-second epoch was transformed into a 537-feature vector spanning spectral power, band ratios, Hjorth parameters, entropy measures, coherence, wavelet energies, and peak-frequency metrics. Nine traditional machine learning models were evaluated with leave-one-participant-out cross-validation. A support vector machine with radial basis function kernel achieved the best offline performance with 88.9% accuracy and sub-millisecond inference time (1.02 ms). Our Feature importance analysis was consistent with current canonical pain physiology, showing contralateral alpha suppression, midline theta/alpha enhancement, and frontal gamma bursts. The real-time XGBoost model maintained an end-to-end latency of about 4 ms and 94.2% accuracy, demonstrating that an EEG-based pain monitor is technically feasible within a clinical setting and provides a pathway towards clinical validation.
- Abstract(参考訳): 病院内の現在の痛み評価は、しばしば自己申告または非特異的なEKGバイタルサインに依存している。
このシステムでは、重篤な疾患、鎮静、認知障害のある患者は、過度に治療された痛みやオピオイドの過剰使用に悩まされる。
脳波(EEG)は、脳活動を測定する非侵襲的な方法である。
この技術は、この問題を緩和するために侵害受容処理を強調する補助ツールとして応用される可能性がある。
本研究では,レーザー誘発痛に曝露された健常成人52名(中・中・高)を対象に,高痛と低痛の脳波エポックを分類するための機械学習モデルを比較した。
それぞれの4秒エポックは、スペクトルパワー、バンド比、ヒョースパラメータ、エントロピー測度、コヒーレンス、ウェーブレットエネルギー、ピーク周波数の測定値にまたがる537個のベクトルに変換された。
従来の9つの機械学習モデルについて,参加者間比較による評価を行った。
放射基底関数カーネルを持つサポートベクターマシンは88.9%の精度と1ミリ秒以下の推論時間(1.02ms)で最高のオフライン性能を達成した。
特徴的分析は現在の標準痛生理と一致し, 対側アルファ抑制, 正中テタ/アルファ増強, 前頭ガンマバーストを認めた。
リアルタイムXGBoostモデルは、約4msと94.2%の精度でエンドツーエンドのレイテンシを維持しており、脳波ベースの鎮痛モニターが臨床環境で技術的に実現可能であることを示し、臨床検証への道筋を提供する。
関連論文リスト
- Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
前立腺MRIの非対位画像翻訳のための新しいアプローチと臨床的に重要なPCaを分類するための不確実性認識トレーニングアプローチを提案する。
提案手法では,無ペアの3.0T多パラメータ前立腺MRIを1.5Tに翻訳し,利用可能なトレーニングデータを増強する。
実験の結果,提案手法は,従来の研究に比べてAUC(Area Under ROC Curve)を20%以上改善することがわかった。
論文 参考訳(メタデータ) (2023-07-02T05:26:54Z) - Automatic pain recognition from Blood Volume Pulse (BVP) signal using
machine learning techniques [0.0]
血液量パルス(BVP)は、客観的な痛み評価に役立つ生理学的指標の1つである。
本研究では,BVP信号に機械学習技術を適用し,非侵襲的な痛覚モダリティを計測した。
論文 参考訳(メタデータ) (2023-03-19T09:03:14Z) - Energy-Efficient Tree-Based EEG Artifact Detection [17.085570466000906]
てんかんモニタリングでは、脳波アーチファクトは振幅と周波数の両方で形態学的に類似しているため、発作と誤認されることが多い。
本研究では, 並列超低消費電力(PULP)組み込みプラットフォーム上で, 最小数のEEGチャネルに基づくアーティファクト検出アルゴリズムの実装について述べる。
論文 参考訳(メタデータ) (2022-04-19T12:57:26Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
本稿では,Intelligent Sight and Sound (ISS) 臨床試験の一環として収集された,最初の慢性ガン痛データセットを紹介する。
これまで収集されたデータは29の患者、509のスマートフォンビデオ、189,999のフレーム、そして自己報告された感情と活動の痛みのスコアから成っている。
静的画像とマルチモーダルデータを用いて、自己報告された痛みレベルを予測する。
論文 参考訳(メタデータ) (2022-04-07T22:14:37Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Neural Network Based Epileptic EEG Detection and Classification [0.0]
脳波信号の真の性質をテキスト1次元ベクトルとして保存するモデルが提案されている。
提案モデルは,平均感度81%,特異度81.4%であるボン大学データセットに対して,それぞれ芸術性能の状態を達成している。
論文 参考訳(メタデータ) (2021-11-05T05:25:40Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z) - A Machine Learning Early Warning System: Multicenter Validation in
Brazilian Hospitals [4.659599449441919]
臨床劣化の早期認識は、入院患者の死亡率と死亡率を減らすための主要なステップの1つである。
Intensive Care Unit, ICUと比較して, 病院病棟は注目度が低いため, プラットフォームがERHのストリームに接続されている場合, 危険な状況に対する意識が大幅に改善する可能性が示唆された。
機械学習の適用により、システムは患者のすべての履歴を考慮し、高いパフォーマンスの予測モデルを使用することで、インテリジェントな早期警告システムを実現することができる。
論文 参考訳(メタデータ) (2020-06-09T21:21:38Z) - DENS-ECG: A Deep Learning Approach for ECG Signal Delineation [15.648061765081264]
本稿では,心拍のリアルタイムセグメンテーションのためのディープラーニングモデルを提案する。
提案アルゴリズムはDENS-ECGアルゴリズムと呼ばれ、畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)モデルを組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-18T13:13:41Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。