論文の概要: NEO: No-Optimization Test-Time Adaptation through Latent Re-Centering
- arxiv url: http://arxiv.org/abs/2510.05635v1
- Date: Tue, 07 Oct 2025 07:35:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:08.140721
- Title: NEO: No-Optimization Test-Time Adaptation through Latent Re-Centering
- Title(参考訳): NEO: 潜水再突入によるテスト時間適応の最適化
- Authors: Alexander Murphy, Michal Danilowski, Soumyajit Chatterjee, Abhirup Ghosh,
- Abstract要約: テスト時間適応(TTA)法は、しばしば計算コストが高く、効果的な適応のために大量のデータを必要とする。
我々は,バニラ推定に比較して有意な計算を加えない完全TTA手法NEOを開発した。
Raspberry PiとJetson Orin Nanoデバイスでは、NEOはベースラインと比較して推論時間を63%削減し、メモリ使用量を9%削減する。
- 参考スコア(独自算出の注目度): 42.35462115256348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Test-Time Adaptation (TTA) methods are often computationally expensive, require a large amount of data for effective adaptation, or are brittle to hyperparameters. Based on a theoretical foundation of the geometry of the latent space, we are able to significantly improve the alignment between source and distribution-shifted samples by re-centering target data embeddings at the origin. This insight motivates NEO -- a hyperparameter-free fully TTA method, that adds no significant compute compared to vanilla inference. NEO is able to improve the classification accuracy of ViT-Base on ImageNet-C from 55.6% to 59.2% after adapting on just one batch of 64 samples. When adapting on 512 samples NEO beats all 7 TTA methods we compare against on ImageNet-C, ImageNet-R and ImageNet-S and beats 6/7 on CIFAR-10-C, while using the least amount of compute. NEO performs well on model calibration metrics and additionally is able to adapt from 1 class to improve accuracy on 999 other classes in ImageNet-C. On Raspberry Pi and Jetson Orin Nano devices, NEO reduces inference time by 63% and memory usage by 9% compared to baselines. Our results based on 3 ViT architectures and 4 datasets show that NEO can be used efficiently and effectively for TTA.
- Abstract(参考訳): テスト時間適応(TTA)法は、しばしば計算コストが高く、効果的な適応のために大量のデータを必要とするか、ハイパーパラメータに脆弱である。
潜在空間の幾何学の理論的基礎に基づいて、原点における対象データ埋め込みを再集中させることにより、ソースと分布シフトしたサンプルのアライメントを著しく改善することができる。
この洞察はNEO(Hyperparameter-free fully TTA)をモチベーションとし、バニラ推論に比較して大きな計算を加えない。
NEO は ImageNet-C 上の ViT-Base の分類精度を 55.6% から 59.2% に改善した。
512サンプルのNEOは、ImageNet-C、ImageNet-R、ImageNet-Sで比較した7つのTTAメソッド全てを上回り、最小の計算量を使用しながらCIFAR-10-Cで6/7を上回ります。
NEOはモデルのキャリブレーションの指標に優れており、ImageNet-Cの999クラスの精度を向上させるために1クラスから適応することができる。
Raspberry PiとJetson Orin Nanoデバイスでは、NEOはベースラインと比較して推論時間を63%削減し、メモリ使用量を9%削減する。
3 つの ViT アーキテクチャと 4 つのデータセットに基づく結果から,NEO が TTA に有効かつ効果的に使用できることを示す。
関連論文リスト
- Test-Time Training Done Right [61.8429380523577]
テスト時間トレーニング(TTT)モデルは、推論中にモデルの重みの一部を適応させることによってコンテキストをモデル化する。
既存のTT手法は、長文データを扱う上で有効性を示すのに苦労した。
我々は,大規模チャンクテストタイムトレーニング(LaCT)を開発し,ハードウェア利用率を桁違いに向上させる。
論文 参考訳(メタデータ) (2025-05-29T17:50:34Z) - SANA 1.5: Efficient Scaling of Training-Time and Inference-Time Compute in Linear Diffusion Transformer [49.1761733723771]
本稿では,テキスト・画像生成における効率的なスケーリングを実現する線形拡散変換器であるSANA-1.5を提案する。
効率的なトレーニングスケーリング、モデルの深さ決定、推論時間スケーリングの3つの重要なイノベーションを紹介します。
これらの戦略により、SANA-1.5 は GenEval 上のテキスト計算画像アライメントスコア 0.81 を達成し、VILA-Judge による推論スケーリングにより、さらに 0.96 に改善できる。
論文 参考訳(メタデータ) (2025-01-30T15:31:48Z) - Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget [10.290956481715387]
Masked Autoencoder Contrastive Tuning (MAE-CT)は、ラベルを使わずにオブジェクトのセマンティッククラスタを形成するようなリッチな機能をチューニングするためのシーケンシャルなアプローチである。
MaE-CTは手作りの強化に頼らず、最小限の拡張(クロップとフリップ)のみを使用しながら、しばしば最高のパフォーマンスを達成する。
MaE-CTは、リニアプローブ、k-NN、ローショット分類の精度、および教師なしクラスタリングの精度において、ImageNetで訓練された以前の自己教師手法よりも優れている。
論文 参考訳(メタデータ) (2023-04-20T17:51:09Z) - Scaling Up 3D Kernels with Bayesian Frequency Re-parameterization for
Medical Image Segmentation [25.62587471067468]
RepUX-Netは、単純な大きなカーネルブロック設計を持つ純粋なCNNアーキテクチャである。
人間の視覚系における空間周波数にインスパイアされ、カーネル収束を要素的設定に変化させるよう拡張する。
論文 参考訳(メタデータ) (2023-03-10T08:38:34Z) - Peeling the Onion: Hierarchical Reduction of Data Redundancy for
Efficient Vision Transformer Training [110.79400526706081]
ビジョントランス (ViT) は近年多くのアプリケーションで成功を収めているが、その計算量とメモリ使用量によって一般化が制限されている。
従来の圧縮アルゴリズムは通常、事前訓練された高密度モデルから始まり、効率的な推論のみに焦点を当てる。
本稿では,3つのスパースの観点から,Tri-Level E-ViTと呼ばれるエンドツーエンドの効率的なトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-19T21:15:47Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - Masked Autoencoders Enable Efficient Knowledge Distillers [31.606287119666572]
本稿では、事前訓練されたモデル、特にマスクオートエンコーダからの知識の蒸留の可能性について検討する。
教師モデルの中間特徴写像と生徒モデルの中間特徴写像との距離を最小化する。
極めて高いマスキング比であっても,教師モデルから知識をしっかりと抽出することができる。
論文 参考訳(メタデータ) (2022-08-25T17:58:59Z) - With a Little Help from My Friends: Nearest-Neighbor Contrastive
Learning of Visual Representations [87.72779294717267]
対比損失で最も近い隣り合わせを正として使用すると、ImageNet分類でパフォーマンスが大幅に向上します。
提案手法が複雑なデータ拡張に依存しないことを実証的に証明する。
論文 参考訳(メタデータ) (2021-04-29T17:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。