論文の概要: DynBenchmark: Customizable Ground Truths to Benchmark Community Detection and Tracking in Temporal Networks
- arxiv url: http://arxiv.org/abs/2510.06245v1
- Date: Fri, 03 Oct 2025 14:02:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.054137
- Title: DynBenchmark: Customizable Ground Truths to Benchmark Community Detection and Tracking in Temporal Networks
- Title(参考訳): DynBenchmark: 時間ネットワークにおけるコミュニティ検出と追跡をベンチマークするためのカスタマイズ可能な地平
- Authors: Laurent Brisson, Cécile Bothorel, Nicolas Duminy,
- Abstract要約: 新しいコミュニティ中心モデルが提案され、カスタマイズ可能なコミュニティ構造を生成する。
このベンチマークは、ノードの出現、消滅、コミュニティ間の移動が可能な、基盤となる時間ネットワークも生成する。
Pythonライブラリ、描画ユーティリティ、バリデーションメトリクスは、基礎真実と動的コミュニティを検出するアルゴリズムの結果を比較するために提供される。
- 参考スコア(独自算出の注目度): 0.764671395172401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph models help understand network dynamics and evolution. Creating graphs with controlled topology and embedded partitions is a common strategy for evaluating community detection algorithms. However, existing benchmarks often overlook the need to track the evolution of communities in real-world networks. To address this, a new community-centered model is proposed to generate customizable evolving community structures where communities can grow, shrink, merge, split, appear or disappear. This benchmark also generates the underlying temporal network, where nodes can appear, disappear, or move between communities. The benchmark has been used to test three methods, measuring their performance in tracking nodes' cluster membership and detecting community evolution. Python libraries, drawing utilities, and validation metrics are provided to compare ground truth with algorithm results for detecting dynamic communities.
- Abstract(参考訳): グラフモデルはネットワークのダイナミクスと進化を理解するのに役立つ。
制御されたトポロジと組込みパーティションを持つグラフを作成することは、コミュニティ検出アルゴリズムを評価するための一般的な戦略である。
しかし、既存のベンチマークは、現実世界のネットワークにおけるコミュニティの進化を追跡する必要性をしばしば見落としている。
これを解決するために、コミュニティの成長、縮小、統合、分割、出現、消失が可能な、カスタマイズ可能なコミュニティ構造を生成する新しいコミュニティ中心モデルが提案されている。
このベンチマークは、ノードの出現、消滅、コミュニティ間の移動が可能な、基盤となる時間ネットワークも生成する。
このベンチマークは、ノードのクラスタメンバシップを追跡し、コミュニティの進化を検出する3つの方法のテストに使用されている。
Pythonライブラリ、描画ユーティリティ、バリデーションメトリクスは、基礎真実と動的コミュニティを検出するアルゴリズムの結果を比較するために提供される。
関連論文リスト
- A Local Perspective-based Model for Overlapping Community Detection [0.06206748337438322]
地域コミュニティの観点から重なり合うコミュニティ検出モデルであるLQ-GCNを提案する。
LQ-GCNはBernoulli-Poissonモデルを用いてコミュニティアフィリエイトマトリックスを構築し、エンドツーエンド検出フレームワークを形成する。
LQ-GCNは、正規化された相互情報(NMI)が最大33%改善され、リコールが26.3%改善された。
論文 参考訳(メタデータ) (2025-03-27T14:43:42Z) - Enhancing Community Detection in Networks: A Comparative Analysis of Local Metrics and Hierarchical Algorithms [49.1574468325115]
本研究は,地域間類似度指標を用いた地域検出の関連性を評価するために,同じ手法を用いている。
これらの指標の有効性は,異なるコミュニティサイズを持つ複数の実ネットワークにベースアルゴリズムを適用して評価した。
論文 参考訳(メタデータ) (2024-08-17T02:17:09Z) - Learning Persistent Community Structures in Dynamic Networks via
Topological Data Analysis [2.615648035076649]
本稿では,コミュニティ間構造における時間的一貫性の整合性を考慮した新しいディープグラフクラスタリングフレームワークを提案する。
MFCは、ノード埋め込みを保存する行列分解に基づくディープグラフクラスタリングアルゴリズムである。
TopoRegは、時間間隔でコミュニティ間構造間のトポロジカルな類似性を維持するために導入された。
論文 参考訳(メタデータ) (2024-01-06T11:29:19Z) - CS-TGN: Community Search via Temporal Graph Neural Networks [0.0]
本稿では,フレキシブルなコミュニティ構造をキャプチャ可能なクエリ駆動型時間グラフ畳み込みネットワーク(CS-TGN)を提案する。
CS-TGNはまず、ローカルクエリ依存構造と、ネットワークの各スナップショットにグローバルグラフを埋め込む。
我々は,このモデルをオンライン環境でインタラクティブなコミュニティ検索に活用する方法を実証する。
論文 参考訳(メタデータ) (2023-03-15T22:23:32Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
そこで我々は,アモータイズされたコミュニティ検出のためのシンプルなフレームワークを提案する。
我々はGNNの表現力と最近のアモータイズクラスタリングの手法を組み合わせる。
我々は、合成および実データセットに関するフレームワークから、いくつかのモデルを評価する。
論文 参考訳(メタデータ) (2020-10-29T16:18:48Z) - Sketch-based community detection in evolving networks [15.512086254435788]
時間変化ネットワークにおけるコミュニティ検出のアプローチを検討する。
このアプローチの中心となるのは、完全なネットワークの各スナップショットにある重要なコミュニティ構造をキャプチャする、小さなスケッチグラフを維持することだ。
すべての処理を並列に処理できるコミュニティ検出アルゴリズムを定式化する。
論文 参考訳(メタデータ) (2020-09-24T17:32:57Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
本研究では,階層型コミュニティ検出の効率向上のために,局所構造ネットワーク特性をプロキシとして利用する方法について検討する。
また,ネットワークプルーニングの性能への影響を,階層的コミュニティ検出をより効率的にするための補助的手法として検証する。
論文 参考訳(メタデータ) (2020-09-15T00:16:12Z) - GRADE: Graph Dynamic Embedding [76.85156209917932]
GRADEは、軌道に先立ってランダムウォークを課すことで、進化するノードとコミュニティ表現を生成することを学ぶ確率モデルである。
我々のモデルは、遷移行列を介して時間ステップ間で更新されるノードコミュニティメンバシップも学習する。
実験では、GRADEは動的リンク予測においてベースラインを上回る性能を示し、動的コミュニティ検出において好適な性能を示し、一貫性と解釈可能な進化するコミュニティを特定する。
論文 参考訳(メタデータ) (2020-07-16T01:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。