論文の概要: Improving the Spatial Resolution of GONG Solar Images to GST Quality Using Deep Learning
- arxiv url: http://arxiv.org/abs/2510.06281v1
- Date: Mon, 06 Oct 2025 20:44:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.094914
- Title: Improving the Spatial Resolution of GONG Solar Images to GST Quality Using Deep Learning
- Title(参考訳): 深層学習によるGONG太陽画像のGST品質向上
- Authors: Chenyang Li, Qin Li, Haimin Wang, Bo Shen,
- Abstract要約: 本稿では,低解像度(LR)フルディスクH$alpha$画像の高精細化のためのGANに基づく超解像化手法を提案する。
我々はReal-ESRGANとResidual-in-Residual Dense Blocksと相対論的判別器を採用した。
このモデルは、太陽黒点の細部を効果的に回収し、フィラメントやフィブリルの細部を解消する。
- 参考スコア(独自算出の注目度): 14.99817358362323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-resolution (HR) solar imaging is crucial for capturing fine-scale dynamic features such as filaments and fibrils. However, the spatial resolution of the full-disk H$\alpha$ images is limited and insufficient to resolve these small-scale structures. To address this, we propose a GAN-based superresolution approach to enhance low-resolution (LR) full-disk H$\alpha$ images from the Global Oscillation Network Group (GONG) to a quality comparable with HR observations from the Big Bear Solar Observatory/Goode Solar Telescope (BBSO/GST). We employ Real-ESRGAN with Residual-in-Residual Dense Blocks and a relativistic discriminator. We carefully aligned GONG-GST pairs. The model effectively recovers fine details within sunspot penumbrae and resolves fine details in filaments and fibrils, achieving an average mean squared error (MSE) of 467.15, root mean squared error (RMSE) of 21.59, and cross-correlation (CC) of 0.7794. Slight misalignments between image pairs limit quantitative performance, which we plan to address in future work alongside dataset expansion to further improve reconstruction quality.
- Abstract(参考訳): 高分解能(HR)太陽イメージングはフィラメントやフィブリルのような微細なダイナミックな特徴を捉えるのに不可欠である。
しかし、フルディスクH$\alpha$画像の空間分解能は制限されており、これらの小さな構造を解くには不十分である。
そこで我々は,GANベースの超解像法を提案し,低分解能(LR)フルディスクH$\alpha$画像をGlobal Oscillation Network Group(GONG)から,Big Bear Solar Observatory/Goode Solar Telescope(BBSO/GST)のHR観測に匹敵する品質まで高める。
我々はReal-ESRGANとResidual-in-Residual Dense Blocksと相対論的判別器を採用した。
GONG-GSTペアを慎重に調整した。
このモデルは、太陽黒点の細部を効果的に回収し、フィラメントやフィブリルの細部を解き、平均2乗誤差(MSE)は467.15、根平均2乗誤差(RMSE)は21.59、交差相関(CC)は0.7794である。
画像ペア間のミスアライメントの軽視は定量的な性能を制限し、さらに再構築品質を向上させるために、データセットの拡張とともに今後の作業に対処する計画である。
関連論文リスト
- STAR: A Benchmark for Astronomical Star Fields Super-Resolution [51.79340280382437]
54,738個のフラックス一貫性の星体画像対を含む大規模SRデータセットSTARを提案する。
本稿では,Flux-Invariant Super Resolution (FISR)モデルを提案する。
論文 参考訳(メタデータ) (2025-07-22T09:28:28Z) - Unsupervised Hyperspectral and Multispectral Images Fusion Based on the
Cycle Consistency [21.233354336608205]
本稿では,CycFusionと呼ばれるサイクル一貫性に基づく教師なしHSIとMSIの融合モデルを提案する。
CycFusion は低空間分解能 HSI (LrHSI) と高空間分解能 MSI (HrMSI) の領域変換を学習する
いくつかのデータセットで行った実験により,提案手法は非教師なし核融合法よりも優れていたことが判明した。
論文 参考訳(メタデータ) (2023-07-07T06:47:15Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Semantic Encoder Guided Generative Adversarial Face Ultra-Resolution
Network [15.102899995465041]
本稿では,セマンティックガイド付き生成逆顔超解像ネットワーク(SEGA-FURN)を提案する。
提案するネットワークは, 組込みセマンティクスを捕捉し, 対数学習を誘導する新しいセマンティクスエンコーダと, Residual in Internal Block (RIDB) という階層型アーキテクチャを用いた新しいジェネレータから構成される。
大規模顔データを用いた実験により,提案手法は優れた超解像結果が得られ,定性比較と定量的比較の両面で他の最先端手法よりも優れることが示された。
論文 参考訳(メタデータ) (2022-11-18T23:16:57Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Memory-augmented Deep Unfolding Network for Guided Image
Super-resolution [67.83489239124557]
誘導画像超解像(GISR)は、HR画像の誘導の下で低解像度(LR)目標画像の空間分解能を高めて高解像度(HR)目標画像を得る。
従来のモデルベース手法は主に画像全体を取り、HR目標画像とHRガイダンス画像との事前分布を仮定する。
HR目標画像上で2種類の事前性を持つGISRの最大後部(MAP)推定モデルを提案する。
論文 参考訳(メタデータ) (2022-02-12T15:37:13Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z) - A Latent Encoder Coupled Generative Adversarial Network (LE-GAN) for
Efficient Hyperspectral Image Super-resolution [3.1023808510465627]
GAN(Generative Adversarial Network)は画像超解像のための効果的なディープラーニングフレームワークであることが証明されている。
モード崩壊の問題を緩和するため,本研究では,潜在エンコーダ(LE-GAN)と組み合わせた新しいGANモデルを提案する。
LE-GANは、生成したスペクトル空間の特徴を画像空間から潜在空間にマッピングし、生成したサンプルを正規化するための結合成分を生成する。
論文 参考訳(メタデータ) (2021-11-16T18:40:19Z) - Best-Buddy GANs for Highly Detailed Image Super-Resolution [71.13466303340192]
我々は,低分解能(LR)入力に基づいて高分解能(HR)画像を生成する単一画像超解像(SISR)問題を考える。
このラインに沿ったほとんどのメソッドは、SISRタスクに十分な柔軟性がない、事前定義されたシングルLRシングルHRマッピングに依存しています。
リッチディテールSISRのためのベストバディGAN(Beby-GAN)を提案する。
イミュータブルな1対1の制約を緩和することで、推定されたパッチを動的に最高の監視を求めることができる。
論文 参考訳(メタデータ) (2021-03-29T02:58:27Z) - FAN: Frequency Aggregation Network for Real Image Super-resolution [33.30542701042704]
単一画像超解像(SISR)は、低解像度(LR)入力画像から高解像度(HR)画像を復元することを目的としている。
実世界の超可溶化問題に対処するために,周波数集約ネットワークであるFANを提案する。
論文 参考訳(メタデータ) (2020-09-30T10:18:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。