論文の概要: Distilling Lightweight Language Models for C/C++ Vulnerabilities
- arxiv url: http://arxiv.org/abs/2510.06645v1
- Date: Wed, 08 Oct 2025 04:58:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.302148
- Title: Distilling Lightweight Language Models for C/C++ Vulnerabilities
- Title(参考訳): C/C++脆弱性のための軽量言語モデルの蒸留
- Authors: Zhiyuan Wei, Xiaoxuan Yang, Jing Sun, Zijian Zhang,
- Abstract要約: FineSecは、知識蒸留を通じて大規模言語モデルを活用する新しいフレームワークで、C/C++における効率的かつ正確な脆弱性識別を可能にする。
データ準備、トレーニング、評価、継続的学習を統合されたシングルタスクワークフローに統合することで、FineSecは合理化されたアプローチを提供する。
- 参考スコア(独自算出の注目度): 7.45549460594508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity of modern software systems exacerbates the prevalence of security vulnerabilities, posing risks of severe breaches and substantial economic loss. Consequently, robust code vulnerability detection is essential for software security. While Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language processing, their potential for automated code vulnerability detection remains underexplored. This paper presents FineSec, a novel framework that harnesses LLMs through knowledge distillation to enable efficient and precise vulnerability identification in C/C++ codebases. FineSec utilizes knowledge distillation to transfer expertise from large teacher models to compact student models, achieving high accuracy with minimal computational cost. By integrating data preparation, training, evaluation, and continuous learning into a unified, single-task workflow, FineSec offers a streamlined approach. Extensive evaluations on C/C++ codebases demonstrate its superiority over both base models and larger LLMs in identifying complex vulnerabilities and logical flaws, establishing FineSec as a practical and scalable solution for real-world software security. To facilitate reproducibility, the datasets, source code, and experimental results are made publicly available at: https://github.com/yangxiaoxuan123/FineSec_detect.
- Abstract(参考訳): 現代のソフトウェアシステムの複雑さの増大は、セキュリティ脆弱性の流行を悪化させ、重大な侵害のリスクと実質的な経済損失を生じさせる。
そのため、ソフトウェアのセキュリティには堅牢なコード脆弱性検出が不可欠である。
大規模言語モデル(LLM)は自然言語処理において顕著な能力を示してきたが、コードの自動脆弱性検出の可能性はまだ探索されていない。
本稿では,C/C++コードベースにおいて,LLMを知識蒸留により活用し,効率的かつ正確な脆弱性識別を可能にする新しいフレームワークであるFineSecを提案する。
FineSecは知識蒸留を利用して、大規模な教師モデルからコンパクトな学生モデルに専門知識を伝達し、最小の計算コストで高精度に達成する。
データ準備、トレーニング、評価、継続的学習を統合されたシングルタスクワークフローに統合することで、FineSecは合理化されたアプローチを提供する。
C/C++コードベースの大規模な評価は、複雑な脆弱性と論理的欠陥を特定する上で、ベースモデルとより大きなLLMの両方よりも優れており、FineSecは現実のソフトウェアセキュリティのための実用的でスケーラブルなソリューションとして確立されている。
再現性を促進するため、データセット、ソースコード、実験結果はhttps://github.com/yangxiaoxuan123/FineSec_detect.comで公開されている。
関連論文リスト
- Boosting Vulnerability Detection of LLMs via Curriculum Preference Optimization with Synthetic Reasoning Data [22.557961978833386]
本稿では,脆弱性パターンのマイニングに優れた大規模言語モデル(LLM)の新たなフレームワークを提案する。
具体的には、脆弱性と対応する固定コードに対する前方および後方の推論プロセスを構築し、高品質な推論データの合成を保証する。
ReVD は LLM ベースのソフトウェア脆弱性検出のための新たな最先端技術,例えば 12.24%-22.77% の精度向上を実現している。
論文 参考訳(メタデータ) (2025-06-09T03:25:23Z) - ProSec: Fortifying Code LLMs with Proactive Security Alignment [14.907702430331803]
既存のメソッドは、インストラクションチューニングのための現実世界の脆弱性からセキュリティに焦点を当てたデータセットを収集する。
コードLLMをセキュアなコーディングプラクティスと整合させるために設計された,新しいプロアクティブなセキュリティアライメントアプローチであるProSecを提案する。
論文 参考訳(メタデータ) (2024-11-19T22:00:01Z) - SeCodePLT: A Unified Platform for Evaluating the Security of Code GenAI [58.29510889419971]
コード生成大型言語モデル(LLM)のセキュリティリスクと能力を評価するための既存のベンチマークは、いくつかの重要な制限に直面している。
手動で検証し、高品質なシード例から始める、汎用的でスケーラブルなベンチマーク構築フレームワークを導入し、ターゲット突然変異を通じて拡張する。
このフレームワークをPython、C/C++、Javaに適用すると、44のCWEベースのリスクカテゴリと3つのセキュリティ機能にまたがる5.9k以上のサンプルデータセットであるSeCodePLTが構築されます。
論文 参考訳(メタデータ) (2024-10-14T21:17:22Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
脆弱性検出のためのMSIVD, マルチタスクによる自己指示型微調整を, チェーン・オブ・シント・プロンプトとLDMによる自己指示にインスパイアした。
実験の結果,MSIVDは高い性能を示し,LineVul(LLMベースの脆弱性検出ベースライン)はBigVulデータセットでは0.92点,PreciseBugsデータセットでは0.48点であった。
論文 参考訳(メタデータ) (2024-06-09T19:18:05Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - Enhancing Large Language Models for Secure Code Generation: A
Dataset-driven Study on Vulnerability Mitigation [24.668682498171776]
大規模言語モデル(LLM)はコード生成に大きな進歩をもたらし、初心者と経験豊富な開発者の両方に恩恵を与えている。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を不注意に伝播するリスクをもたらす。
本稿では,ソフトウェアセキュリティの観点からのLLMの評価と拡張に焦点をあてた総合的研究について述べる。
論文 参考訳(メタデータ) (2023-10-25T00:32:56Z) - SecureFalcon: Are We There Yet in Automated Software Vulnerability Detection with LLMs? [3.566250952750758]
SecureFalconは、Falcon-40Bモデルから派生した1億1100万のパラメータしか持たない革新的なモデルアーキテクチャである。
SecureFalconはバイナリ分類で94%の精度、マルチクラス化で最大92%、即時CPU推論時間を実現している。
論文 参考訳(メタデータ) (2023-07-13T08:34:09Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。