論文の概要: Utilizing Large Language Models for Machine Learning Explainability
- arxiv url: http://arxiv.org/abs/2510.06912v1
- Date: Wed, 08 Oct 2025 11:46:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.464127
- Title: Utilizing Large Language Models for Machine Learning Explainability
- Title(参考訳): 機械学習説明可能性のための大規模言語モデルの利用
- Authors: Alexandros Vassiliades, Nikolaos Polatidis, Stamatios Samaras, Sotiris Diplaris, Ignacio Cabrera Martin, Yannis Manolopoulos, Stefanos Vrochidis, Ioannis Kompatsiaris,
- Abstract要約: 本研究では,機械学習(ML)ソリューションを自律的に生成する際の,大規模言語モデル(LLM)の説明可能性について検討する。
最先端の3つのLCMは、ランダムフォレスト、XGBoost、マルチレイヤーパーセプトロン、ロング短期記憶ネットワークの4つの共通分類器のためのトレーニングパイプラインを設計するよう促される。
生成したモデルは、SHAP(SHapley Additive exPlanations)を用いた予測性能(リコール、精度、F1スコア)と説明可能性の観点から評価される。
- 参考スコア(独自算出の注目度): 37.31918138232927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the explainability capabilities of large language models (LLMs), when employed to autonomously generate machine learning (ML) solutions. We examine two classification tasks: (i) a binary classification problem focused on predicting driver alertness states, and (ii) a multilabel classification problem based on the yeast dataset. Three state-of-the-art LLMs (i.e. OpenAI GPT, Anthropic Claude, and DeepSeek) are prompted to design training pipelines for four common classifiers: Random Forest, XGBoost, Multilayer Perceptron, and Long Short-Term Memory networks. The generated models are evaluated in terms of predictive performance (recall, precision, and F1-score) and explainability using SHAP (SHapley Additive exPlanations). Specifically, we measure Average SHAP Fidelity (Mean Squared Error between SHAP approximations and model outputs) and Average SHAP Sparsity (number of features deemed influential). The results reveal that LLMs are capable of producing effective and interpretable models, achieving high fidelity and consistent sparsity, highlighting their potential as automated tools for interpretable ML pipeline generation. The results show that LLMs can produce effective, interpretable pipelines with high fidelity and consistent sparsity, closely matching manually engineered baselines.
- Abstract(参考訳): 本研究では,機械学習(ML)ソリューションを自律的に生成する際の,大規模言語モデル(LLM)の説明可能性について検討する。
2つの分類課題について検討する。
一 運転注意状況の予測に焦点を当てた二分分類問題、及び
(II)酵母データセットに基づく多ラベル分類問題。
最先端の3つのLCM(OpenAI GPT, Anthropic Claude, DeepSeek)は、Random Forest、XGBoost、Multilayer Perceptron、Long Short-Term Memory Networkの4つの共通分類器のためのトレーニングパイプラインを設計するよう促される。
生成したモデルは、SHAP(SHapley Additive exPlanations)を用いて予測性能(リコール、精度、F1スコア)と説明可能性の観点から評価する。
具体的には,平均SHAP密度(平均正方形誤差とモデル出力)と平均SHAP間隔(有意な特徴数)を測定する。
その結果、LLMは有効かつ解釈可能なモデルを生成することができ、高い忠実度と一貫した間隔を実現し、解釈可能なMLパイプライン生成のための自動化ツールとしての可能性を強調した。
その結果,LLMは高い忠実度と一貫した間隔を持ち,手動で設計したベースラインと密接に一致した,効果的で解釈可能なパイプラインを生成することができることがわかった。
関連論文リスト
- Large Language Models as Universal Predictors? An Empirical Study on Small Tabular Datasets [0.0]
大規模言語モデル(LLM)は、下流タスクを明示的に微調整することなく、構造化された入力に対して予測タスクを実行することができる。
分類,回帰,クラスタリングタスクのための小規模構造化データセット上でのLCMの実証関数近似能力について検討した。
以上の結果から,LLMは構造化データの汎用的予測エンジンとして機能する可能性が示唆された。
論文 参考訳(メタデータ) (2025-08-24T15:00:51Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
大規模言語モデル(LLM)は、学術、産業、そして日々のアプリケーションに欠かせないものになっている。
大規模言語モデル (LLM) 時代における評価の課題の1つは一般化問題である。
従来の性能スコアを補完するメカニズムの解釈可能性向上指標であるモデル利用指数(MUI)を提案する。
論文 参考訳(メタデータ) (2025-04-10T04:09:47Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
本稿では,機能エンジニアとして大規模言語モデルを用いる新しい文脈内学習フレームワークFeatLLMを提案する。
FeatLLMは高品質なルールを生成し、TabLLMやSTUNTなどよりも大幅に(平均で10%)優れている。
論文 参考訳(メタデータ) (2024-04-15T06:26:08Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。