論文の概要: D2RA: Dual Domain Regeneration Attack
- arxiv url: http://arxiv.org/abs/2510.07538v1
- Date: Wed, 08 Oct 2025 20:54:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:14.729747
- Title: D2RA: Dual Domain Regeneration Attack
- Title(参考訳): D2RA:デュアルドメイン再生攻撃
- Authors: Pragati Shuddhodhan Meshram, Varun Chandrasekaran,
- Abstract要約: D2RAはトレーニング不要のシングルイメージ攻撃で、基礎となるモデルにアクセスせずに透かしを除去または弱める。
D2RAは、ウォーターマークされた画像を、補完的な表現を越えて自然の先行に投影することにより、透かし信号を抑制し、視覚的忠実さを保っている。
- 参考スコア(独自算出の注目度): 14.483783077617483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing use of generative models has intensified the need for watermarking methods that ensure content attribution and provenance. While recent semantic watermarking schemes improve robustness by embedding signals in latent or frequency representations, we show they remain vulnerable even under resource-constrained adversarial settings. We present D2RA, a training-free, single-image attack that removes or weakens watermarks without access to the underlying model. By projecting watermarked images onto natural priors across complementary representations, D2RA suppresses watermark signals while preserving visual fidelity. Experiments across diverse watermarking schemes demonstrate that our approach consistently reduces watermark detectability, revealing fundamental weaknesses in current designs. Our code is available at https://github.com/Pragati-Meshram/DAWN.
- Abstract(参考訳): 生成モデルの利用の増加により、コンテンツの属性と証明を保証する透かし方法の必要性が高まっている。
近年のセマンティックな透かし方式は、潜時表現や周波数表現に信号を埋め込むことによってロバスト性を向上させるが、資源制約された逆数設定の下でも脆弱であることを示す。
D2RAはトレーニング不要のシングルイメージ攻撃で、基礎となるモデルにアクセスせずに透かしを除去または弱める。
D2RAは、ウォーターマークされた画像を、補完的な表現を越えて自然の先行に投影することにより、透かし信号を抑制し、視覚的忠実さを保っている。
多様な透かし方式による実験により、我々のアプローチは透かし検出性を一貫して低減し、現在の設計における根本的な弱点を明らかにしている。
私たちのコードはhttps://github.com/Pragati-Meshram/DAWN.comで公開されています。
関連論文リスト
- Diffusion-Based Image Editing for Breaking Robust Watermarks [4.273350357872755]
強力な拡散ベースの画像生成と編集技術は、堅牢なウォーターマーキングスキームに新たな脅威をもたらす。
拡散駆動型画像再生プロセスでは,画像内容の保存中に埋め込み透かしを消去できることを示す。
生成中の透かし信号に特異的な誘導拡散攻撃を導入し,透かし検出性を著しく低下させた。
論文 参考訳(メタデータ) (2025-10-07T14:34:42Z) - Towards Dataset Copyright Evasion Attack against Personalized Text-to-Image Diffusion Models [52.877452505561706]
データセットのオーナシップ検証(DOV)を損なうよう特別に設計された最初の著作権回避攻撃を提案する。
CEAT2Iは, 試料検出, トリガー同定, 効率的な透かし除去の3段階からなる。
実験の結果,CEAT2I はモデル性能を保ちながら DOV 機構を効果的に回避できることがわかった。
論文 参考訳(メタデータ) (2025-05-05T17:51:55Z) - Invisible Watermarks: Attacks and Robustness [0.3495246564946556]
本稿では,攻撃時の画像品質の劣化を最小限に抑えるとともに,透かしの堅牢性を向上する新しい手法を提案する。
そこで本研究では,デコード中,一方の透かしのモダリティを保ちながら他方を完全に除去する独自の透かし除去ネットワークを提案する。
評価の結果,1)他のモダリティを復号する際の透かしモダリティの1つを保持するための透かし除去モデルの実装は,ベースライン性能において若干改善され,2)LBAは画像全体の均一なぼかしに比べて画像の劣化を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-12-17T03:50:13Z) - Black-Box Forgery Attacks on Semantic Watermarks for Diffusion Models [16.57738116313139]
攻撃者は、異なる潜在空間やアーキテクチャであっても、無関係なモデルを利用して、強力で現実的な偽造攻撃を行うことができることを示す。
第1は、対象の透かしを実画像に印字し、無関係のLCMにおいて任意の画像の潜在表現を操作する。
第2の攻撃は、透かし画像を反転させて任意のプロンプトで再生することにより、目標の透かしで新たな画像を生成する。
論文 参考訳(メタデータ) (2024-12-04T12:57:17Z) - WAVES: Benchmarking the Robustness of Image Watermarks [67.955140223443]
WAVES(Watermark Analysis Via Enhanced Stress-testing)は、画像透かしの堅牢性を評価するためのベンチマークである。
我々は,検出タスクと識別タスクを統合し,多様なストレステストからなる標準化された評価プロトコルを確立する。
我々はWAVESを,ロバストな透かしの将来の開発のためのツールキットとして想定する。
論文 参考訳(メタデータ) (2024-01-16T18:58:36Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
バックドアベースのオーナシップ検証が最近人気となり,モデルオーナがモデルをウォーターマークすることが可能になった。
本研究では,これらの透かし除去モデルを発見し,それらの透かし挙動を復元するミニマックス定式化を提案する。
本手法は,パラメトリックな変化と多数のウォーターマーク除去攻撃に対するモデル透かしの堅牢性を向上させる。
論文 参考訳(メタデータ) (2023-09-09T12:46:08Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisibleの透かしは、所有者によってのみ検出可能な隠されたメッセージを埋め込むことで、画像の著作権を保護する。
我々は、これらの見えない透かしを取り除くために、再生攻撃のファミリーを提案する。
提案手法は,まず画像にランダムノイズを加えて透かしを破壊し,画像を再構成する。
論文 参考訳(メタデータ) (2023-06-02T23:29:28Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
本稿では,ディープラーニングモデルのための認証型透かし手法を提案する。
我々の透かしは、モデルパラメータが特定のl2しきい値以上変更されない限り、取り外し不可能であることが保証されている。
私たちの透かしは、従来の透かし法に比べて経験的に頑丈です。
論文 参考訳(メタデータ) (2022-07-16T16:06:59Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。