論文の概要: Robust Canonicalization through Bootstrapped Data Re-Alignment
- arxiv url: http://arxiv.org/abs/2510.08178v1
- Date: Thu, 09 Oct 2025 13:05:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:15.084867
- Title: Robust Canonicalization through Bootstrapped Data Re-Alignment
- Title(参考訳): ブートストラップデータ再アライメントによるロバストな正準化
- Authors: Johann Schmidt, Sebastian Stober,
- Abstract要約: 昆虫や鳥の識別などのきめ細かい視覚分類タスクは、微妙な視覚的手がかりに対する感受性を必要とする。
分散を低減してトレーニングサンプルを反復的に調整するブートストラップアルゴリズムを提案する。
本手法は,拡張と同等の性能を保ちながら,同変および正準化ベースラインを一貫して上回ることを示す。
- 参考スコア(独自算出の注目度): 5.437226012505534
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Fine-grained visual classification (FGVC) tasks, such as insect and bird identification, demand sensitivity to subtle visual cues while remaining robust to spatial transformations. A key challenge is handling geometric biases and noise, such as different orientations and scales of objects. Existing remedies rely on heavy data augmentation, which demands powerful models, or on equivariant architectures, which constrain expressivity and add cost. Canonicalization offers an alternative by shielding such biases from the downstream model. In practice, such functions are often obtained using canonicalization priors, which assume aligned training data. Unfortunately, real-world datasets never fulfill this assumption, causing the obtained canonicalizer to be brittle. We propose a bootstrapping algorithm that iteratively re-aligns training samples by progressively reducing variance and recovering the alignment assumption. We establish convergence guarantees under mild conditions for arbitrary compact groups, and show on four FGVC benchmarks that our method consistently outperforms equivariant, and canonicalization baselines while performing on par with augmentation.
- Abstract(参考訳): 昆虫や鳥の識別などのきめ細かい視覚分類(FGVC)タスクは、空間変換に頑健なまま、微妙な視覚的手がかりに対する感受性を必要とする。
鍵となる課題は、異なる向きやオブジェクトのスケールなど、幾何学的バイアスとノイズを扱うことだ。
既存の改善は、強力なモデルを必要とする重いデータ拡張や、表現力を制限しコストを増大させる同種のアーキテクチャに依存している。
正準化は、そのようなバイアスを下流モデルから保護することで代替手段を提供する。
実際には、そのような関数はしばしば正準化前のデータを使って得られる。
残念ながら、現実世界のデータセットはこの仮定を満たさないため、得られた正準化器は不安定である。
本稿では,段階的に分散を減らし,アライメントの仮定を回復させることにより,トレーニングサンプルを反復的に調整するブートストラップアルゴリズムを提案する。
任意のコンパクト群に対して緩やかな条件下で収束保証を確立し、FGVCベンチマークで、この手法が拡張と同等に実行しながら、同変および正準化ベースラインを一貫して上回ることを示す。
関連論文リスト
- Geometrically Constrained and Token-Based Probabilistic Spatial Transformers [5.437226012505534]
我々は、トランスフォーマーベースのビジョンパイプラインの標準化ツールとして、空間トランスフォーマーネットワーク(STN)を再考する。
本稿では、堅牢性を向上させる確率的、コンポーネントワイドな拡張を提案する。
本手法が他のSTNと比較して頑健さを常に向上することを示す。
論文 参考訳(メタデータ) (2025-09-14T11:30:53Z) - BayesTTA: Continual-Temporal Test-Time Adaptation for Vision-Language Models via Gaussian Discriminant Analysis [41.09181390655176]
CLIPのような視覚言語モデル(VLM)は、強いゼロショット認識を実現するが、実世界のシナリオに共通する時空間的な分散シフトの下で大幅に劣化する。
テスト分布が時間とともに徐々に変化するCT-TTA(textitContinal-Temporal Test-Time Adaptation)として、この実践的問題を定式化する。
我々は、時間的に一貫した予測を実行し、視覚表現を動的に調整する、ベイズ適応フレームワークであるtextitBayesTTAを提案する。
論文 参考訳(メタデータ) (2025-07-11T14:02:54Z) - Diffusion Classifier Guidance for Non-robust Classifiers [0.5999777817331317]
拡散過程の雑音に対する一般,非ロバスト,ロバストな分類器の感度について検討した。
非ロバスト分類器はノイズ条件下で大きな精度劣化を示し、不安定な誘導勾配をもたらす。
本稿では,一段階の復号化画像予測を利用して最適化手法に着想を得た手法を提案する。
論文 参考訳(メタデータ) (2025-07-01T11:39:41Z) - Solving Inverse Problems with FLAIR [59.02385492199431]
フローベースの潜在生成モデルは、驚くべき品質の画像を生成でき、テキスト・ツー・イメージ生成も可能である。
本稿では,フローベース生成モデルを逆問題の前兆として活用する新しい学習自由変分フレームワークFLAIRを提案する。
標準画像ベンチマークの結果、FLAIRは再現性やサンプルの多様性の観点から、既存の拡散法や流れ法よりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2025-06-03T09:29:47Z) - EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks [55.214444066134114]
我々は、同変エンコーダ、デコーダ、およびバイアテンション機構を介し、完全にターゲット同変のアーキテクチャに適応する置換不変性を設計する。
標準分類ベンチマークの実証的評価は、事前学習中に見られたクラス数より多いデータセットでは、我々のモデルは計算オーバーヘッドを低く抑えながら既存の手法と一致または超えていることを示している。
論文 参考訳(メタデータ) (2025-02-10T17:11:20Z) - ROTI-GCV: Generalized Cross-Validation for right-ROTationally Invariant Data [1.194799054956877]
高次元正規化回帰における2つの重要なタスクは、正確な予測のために正規化強度を調整し、サンプル外リスクを推定することである。
問題のある条件下でクロスバリデーションを確実に行うための新しいフレームワーク ROTI-GCV を導入する。
論文 参考訳(メタデータ) (2024-06-17T15:50:00Z) - Equivariant Adaptation of Large Pretrained Models [20.687626756753563]
正規化ネットワークは,大規模な事前学習ネットワークの同種化に有効であることを示す。
データセットに依存した事前情報を用いて正準化関数を通知し、その性能を維持しながら、大きな事前訓練されたモデルを同変させることができる。
論文 参考訳(メタデータ) (2023-10-02T21:21:28Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z) - Fine-grained Retrieval Prompt Tuning [149.9071858259279]
微粒な検索プロンプトチューニングは, サンプルプロンプトと特徴適応の観点から, きめの細かい検索タスクを実行するために, 凍結した事前学習モデルを操る。
学習可能なパラメータが少ないFRPTは、広く使われている3つの細粒度データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-07-29T04:10:04Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
事前学習されたトランスモデルの微調整は、一般的なNLPタスクを解決するための標準的なアプローチとなっている。
そこで本研究では,可視性ランキングタスクをフルテキスト形式でキャストする新たなスコアリング手法を提案する。
提案手法は, ランダム再起動にまたがって, より安定した学習段階を提供することを示す。
論文 参考訳(メタデータ) (2020-04-29T10:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。