論文の概要: Pinpointing crucial steps: Attribution-based Credit Assignment for Verifiable Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2510.08899v1
- Date: Fri, 10 Oct 2025 01:22:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 00:38:47.912609
- Title: Pinpointing crucial steps: Attribution-based Credit Assignment for Verifiable Reinforcement Learning
- Title(参考訳): 重要なステップをピンポイントする: 検証可能な強化学習のための属性ベースのクレジットアサインメント
- Authors: Junxi Yin, Haisen Luo, Zhenyu Li, Yihua Liu, Dan Liu, Zequn Li, Xiaohang Xu,
- Abstract要約: ACPOは、困難なカリキュラムを組み込んだ段階的なフレームワークである。
ACPOは、トラジェクティブセマンティックセグメンテーションと属性ベースの表現を用いて探索を改善する。
これは、各推論ステップの階層的寄与を正確に定量化する分解された報酬システムによる搾取を強化する。
- 参考スコア(独自算出の注目度): 5.880405013005892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Reinforcement Learning with Verifiable Rewards (RLVR) enhances complex reasoning in LLMs, current methods struggle to balance exploration and exploitation. This leads to critical issues like inaccurate credit assignment for intermediate steps and premature entropy collapse, limiting model performance. To address this, we introduce Attribution-based Contribution to Policy Optimization (ACPO), a phased framework that incorporates a difficulty-aware curriculum. ACPO improves exploration by using trajectory semantic segmentation and an attribution-based representation to dynamically regulate policy entropy, thus mitigating its collapse. Concurrently, it enhances exploitation with a factorized reward system that precisely quantifies the hierarchical contribution of each reasoning step, ensuring accurate credit assignment. Extensive experiments on challenging benchmarks, including AIME, MATH, and AMC, demonstrate that ACPO significantly outperforms existing state-of-the-art approaches.
- Abstract(参考訳): Reinforcement Learning with Verifiable Rewards (RLVR)はLLMの複雑な推論を強化する一方で、現在の手法は探索と搾取のバランスをとるのに苦労している。
これにより、中間ステップの不正確なクレジット割り当てや初期エントロピー崩壊、モデルパフォーマンスの制限といった重要な問題が発生する。
この問題に対処するため,我々は,困難を意識したカリキュラムを組み込んだ段階的フレームワークであるAttribution-based Contribution to Policy Optimization (ACPO)を紹介した。
ACPOは、トラジェクトリセマンティックセグメンテーションと帰属に基づく表現を使用して、政策エントロピーを動的に制御することで探索を改善し、その崩壊を緩和する。
同時に、各推論ステップの階層的貢献を正確に定量化し、正確な信用割当を保証する、分解された報酬システムによる搾取を強化する。
AIME、MATH、AMCといった挑戦的なベンチマークに関する大規模な実験は、ACPOが既存の最先端のアプローチを大幅に上回っていることを示している。
関連論文リスト
- Agentic Reinforcement Learning with Implicit Step Rewards [92.26560379363492]
大規模言語モデル (LLMs) は強化学習 (agentic RL) を用いた自律的エージェントとして発展している。
我々は,標準RLアルゴリズムとシームレスに統合された一般的なクレジット割り当て戦略であるエージェントRL(iStar)について,暗黙的なステップ報酬を導入する。
我々は,WebShopとVisualSokobanを含む3つのエージェントベンチマークと,SOTOPIAにおける検証不可能な報酬とのオープンなソーシャルインタラクションについて評価した。
論文 参考訳(メタデータ) (2025-09-23T16:15:42Z) - CAPO: Towards Enhancing LLM Reasoning through Generative Credit Assignment [44.33395106709674]
RLVR(Reinforcement Learning with Verifiable Rewards)は、ルールベースのバイナリフィードバックを使用することで、LLM(Large Language Models)の推論能力を改善した。
現在のRLVRメソッドは、通常、すべてのトークンに同じ報酬を割り当てる。
この粗い粒度のフィードバックは、正確なクレジット割り当てを妨げ、モデルがどの推論ステップが成功または失敗につながるかを特定するのが難しくなる。
論文 参考訳(メタデータ) (2025-08-04T11:06:08Z) - Discriminative Policy Optimization for Token-Level Reward Models [55.98642069903191]
プロセス報酬モデル(PRM)は、結果報酬モデル(ORM)と比較して、よりきめ細かい監督を提供する。
Q-RMは、微粒なアノテーションに頼ることなく、優先データからトークンレベルのQ関数を明示的に学習する。
Q-RMによる強化学習は、トレーニング効率を大幅に向上させ、GSM8KでのORMの12倍、MATHでのステップレベルPRMの11倍の収束を実現した。
論文 参考訳(メタデータ) (2025-05-29T11:40:34Z) - SHARP: Synthesizing High-quality Aligned Reasoning Problems for Large Reasoning Models Reinforcement Learning [19.457621121430464]
STEM領域での強化学習を伴う大規模推論モデル(LRM)の訓練は、高品質で多様性があり、検証可能な問題セットの不足によって妨げられる。
検証可能な報酬(RLVR)を用いたLRM強化学習における高品質アラインド推論問題の一元化手法であるSHARPを導入する。
我々は、最先端のLEMを活用して、難解なSTEM質問を推論し、検証し、次に、強化学習ループを使用して、検証可能な報酬信号によってモデルの推論を洗練する。
論文 参考訳(メタデータ) (2025-05-20T09:54:42Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。