論文の概要: Assessment of different loss functions for fitting equivalent circuit models to electrochemical impedance spectroscopy data
- arxiv url: http://arxiv.org/abs/2510.09662v1
- Date: Tue, 07 Oct 2025 16:49:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.532546
- Title: Assessment of different loss functions for fitting equivalent circuit models to electrochemical impedance spectroscopy data
- Title(参考訳): 電気化学インピーダンス分光データに対する等価回路モデルの異なる損失関数の評価
- Authors: Ali Jaberi, Amin Sadeghi, Runze Zhang, Zhaoyang Zhao, Qiuyu Shi, Robert Black, Zoya Sadighi, Jason Hattrick-Simpers,
- Abstract要約: 本稿では,EISデータのボーデ表現から得られた2つの新たな損失関数log-Bとlog-BWを紹介する。
損失関数の選択は収束、計算効率、適合の質、MAPEに影響を与える。
- 参考スコア(独自算出の注目度): 5.502344988106667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrochemical impedance spectroscopy (EIS) data is typically modeled using an equivalent circuit model (ECM), with parameters obtained by minimizing a loss function via nonlinear least squares fitting. This paper introduces two new loss functions, log-B and log-BW, derived from the Bode representation of EIS. Using a large dataset of generated EIS data, the performance of proposed loss functions was evaluated alongside existing ones in terms of R2 scores, chi-squared, computational efficiency, and the mean absolute percentage error (MAPE) between the predicted component values and the original values. Statistical comparisons revealed that the choice of loss function impacts convergence, computational efficiency, quality of fit, and MAPE. Our analysis showed that X2 loss function (squared sum of residuals with proportional weighting) achieved the highest performance across multiple quality of fit metrics, making it the preferred choice when the quality of fit is the primary goal. On the other hand, log-B offered a slightly lower quality of fit while being approximately 1.4 times faster and producing lower MAPE for most circuit components, making log-B as a strong alternative. This is a critical factor for large-scale least squares fitting in data-driven applications, such as training machine learning models on extensive datasets or iterations.
- Abstract(参考訳): 電気化学インピーダンス分光法(EIS)データは通常、等価回路モデル(ECM)を用いてモデル化される。
本稿では,EISのボーデ表現から派生したlog-Bとlog-BWという2つの新たな損失関数を提案する。
生成したESIデータの大規模なデータセットを用いて、予測された成分値と元の値との間のR2スコア、カイ二乗、計算効率、平均絶対パーセンテージ誤差(MAPE)の観点から、提案した損失関数の性能を評価した。
統計的比較の結果,損失関数の選択は収束,計算効率,適合品質,MAPEに影響を及ぼすことがわかった。
分析の結果,X2損失関数(二乗重み付き残差の2乗和)は適合度指標の複数の品質で最高の性能を示し,適合度基準が主目的である場合に好適な選択となることがわかった。
一方、log-Bは、約1.4倍高速で、ほとんどの回路部品ではMAPEが低い品質で適合し、log-Bは強力な代替品となった。
これは、広範囲なデータセットやイテレーションで機械学習モデルをトレーニングするなど、データ駆動アプリケーションに適合する大規模な最小二乗にとって重要な要素である。
関連論文リスト
- Ultra-Resolution Adaptation with Ease [62.56434979517156]
我々は,EmphURAEと呼ばれる超高分解能適応のための重要なガイドラインのセットを提案する。
重み行列の小さな成分のチューニングは、合成データが利用できない場合に広く使用される低ランクアダプタよりも優れていることを示す。
URAEは、FLUX1.1[Pro] Ultraのような最先端のクローズドソースモデルに匹敵する2K世代の性能を達成している。
論文 参考訳(メタデータ) (2025-03-20T16:44:43Z) - Binary Losses for Density Ratio Estimation [2.512309434783062]
有限個の観測値から2つの確率密度の比を推定することは、中央の機械学習問題である。
本研究では, 誤差の小さい密度比推定器が生じる損失関数を特徴付ける。
本研究では,大きな密度比値の正確な推定を優先するような,特定の特性を持つ損失関数を構成するための簡単なレシピを得る。
論文 参考訳(メタデータ) (2024-07-01T15:24:34Z) - Efficient Network Traffic Feature Sets for IoT Intrusion Detection [0.0]
この研究は、複数のIoTネットワークデータセットで、Information Gain、Chi-Squared Test、Recursive Feature Elimination、Mean Absolute Deviation、Dispersion Ratioといった、さまざまな機能選択メソッドの組み合わせによって提供される機能セットを評価します。
より小さな特徴セットがMLモデルの分類性能とトレーニング時間の両方に与える影響を比較し,IoT侵入検出の計算効率を高めることを目的とした。
論文 参考訳(メタデータ) (2024-06-12T09:51:29Z) - Bring Metric Functions into Diffusion Models [145.71911023514252]
DDPM(Denoising Diffusion Probabilistic Model)を改善するカスケード拡散モデル(Cas-DM)を導入する。
提案した拡散モデルバックボーンはLPIPS損失の有効利用を可能にし,最先端画像品質(FID, sFID, IS)を実現する。
実験結果から,提案した拡散モデルバックボーンはLPIPS損失の有効利用を可能にし,最新画像品質(FID, sFID, IS)につながることが示された。
論文 参考訳(メタデータ) (2024-01-04T18:55:01Z) - An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification [0.0]
本稿では、SIGTRONと呼ばれる新しいパラメータ化シグモノイドと、SIGTRON不均衡分類(SIC)モデルと呼ばれる同伴凸モデルを提案する。
従来の$pi$重み付きコスト依存学習モデルとは対照的に、SICモデルは損失関数に外部の$pi$重みを持たない。
提案したSICモデルは,データセットのバリエーションに適応可能であることを示す。
論文 参考訳(メタデータ) (2023-12-26T13:14:17Z) - FeDXL: Provable Federated Learning for Deep X-Risk Optimization [105.17383135458897]
我々は、既存のアルゴリズムが適用できないXリスクのファミリーを最適化するために、新しい連邦学習(FL)問題に取り組む。
Xリスクに対するFLアルゴリズムを設計する際の課題は、複数のマシンに対する目的の非可逆性と、異なるマシン間の相互依存にある。
論文 参考訳(メタデータ) (2022-10-26T00:23:36Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - Focal and Efficient IOU Loss for Accurate Bounding Box Regression [63.14659624634066]
オブジェクト検出では、境界ボックス回帰(BBR)はオブジェクトローカリゼーションのパフォーマンスを決定する重要なステップです。
i) $ell_n$-norm と IOU ベースのロス関数はどちらも BBR の目的を描くのに非効率的であり、これは遅い収束と不正確な回帰結果をもたらす。
論文 参考訳(メタデータ) (2021-01-20T14:33:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。