論文の概要: Comparative Explanations via Counterfactual Reasoning in Recommendations
- arxiv url: http://arxiv.org/abs/2510.10920v1
- Date: Mon, 13 Oct 2025 02:31:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:30.154418
- Title: Comparative Explanations via Counterfactual Reasoning in Recommendations
- Title(参考訳): 勧告における反実的推論による比較説明
- Authors: Yi Yu, Zhenxing Hu,
- Abstract要約: 提案手法は,提案する勧告に対する比較対実的説明法(CoCountER)である。
CoCountERはソフトスワップ操作に基づいて反ファクトデータを生成し、任意のペアの比較項目のレコメンデーションの説明を可能にする。
実証実験により、我々のアプローチの有効性が検証された。
- 参考スコア(独自算出の注目度): 10.681803129291389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable recommendation through counterfactual reasoning seeks to identify the influential aspects of items in recommendations, which can then be used as explanations. However, state-of-the-art approaches, which aim to minimize changes in product aspects while reversing their recommended decisions according to an aggregated decision boundary score, often lead to factual inaccuracies in explanations. To solve this problem, in this work we propose a novel method of Comparative Counterfactual Explanations for Recommendation (CoCountER). CoCountER creates counterfactual data based on soft swap operations, enabling explanations for recommendations of arbitrary pairs of comparative items. Empirical experiments validate the effectiveness of our approach.
- Abstract(参考訳): 反事実的推論による説明可能なレコメンデーションは、レコメンデーションにおけるアイテムの影響力のある側面を特定し、説明として使用することができる。
しかし、製品面の変化を最小限に抑えつつ、決定境界の集計値に従って推奨決定を逆転させることを目的とした最先端のアプローチは、しばしば説明の事実的不正確な結果につながる。
この問題を解決するために,提案手法はCoCounter (CoCounter) による提案手法を提案する。
CoCountERはソフトスワップ操作に基づいて反ファクトデータを生成し、任意のペアの比較項目のレコメンデーションの説明を可能にする。
実証実験により、我々のアプローチの有効性が検証された。
関連論文リスト
- Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
本稿では,ユーザの嗜好に関する明確な推論を新たなアライメント目標として組み込んだ,新たなDeliberative Recommendationタスクを提案する。
次にReasoningを利用したRecommenderフレームワークを導入する。
論文 参考訳(メタデータ) (2025-02-04T07:17:54Z) - Revisiting Reciprocal Recommender Systems: Metrics, Formulation, and Method [60.364834418531366]
RRSの性能を包括的かつ正確に評価する5つの新しい評価指標を提案する。
因果的観点からRSを定式化し、二元的介入として勧告を定式化する。
提案手法では,結果の一致を最大化する手法を提案する。
論文 参考訳(メタデータ) (2024-08-19T07:21:02Z) - Stability of Explainable Recommendation [10.186029242664931]
既存の特徴指向の説明可能なレコメンデーションの脆弱性について検討する。
我々は、全ての説明可能なモデルが騒音レベルの増加に弱いことを観察する。
本研究は,レコメンデーションシステムにおけるロバストな説明の話題について,実証的な検証を行った。
論文 参考訳(メタデータ) (2024-05-03T04:44:51Z) - The Problem of Coherence in Natural Language Explanations of Recommendations [4.239829789304117]
我々は、説明品質の重要な側面が実験的評価で見過ごされていることを論じる。
本稿では,最先端手法の1つによる説明書の手作業による検証結果について述べる。
次に,提案手法が推薦性能の他の側面に影響を与えることなく,説明コヒーレンスを大幅に改善することを示す実験的評価を行った。
論文 参考訳(メタデータ) (2023-12-18T17:12:35Z) - Aligning Recommendation and Conversation via Dual Imitation [56.236932446280825]
提案するDICR(Dual Imitation for Conversational Recommendation)は,リコメンデーションパスとユーザ関心シフトパスを明確に整合させる2つの模倣を設計する。
アライメント信号の交換により、DICRはレコメンデーションと会話モジュール間の双方向のプロモーションを実現する。
実験により、DICRは推奨と会話のパフォーマンスに関する最先端モデルよりも、自動的、人的、斬新な説明可能性の指標の方が優れていることが示された。
論文 参考訳(メタデータ) (2022-11-05T08:13:46Z) - Reinforced Path Reasoning for Counterfactual Explainable Recommendation [10.36395995374108]
本稿では,項目属性に基づく反現実的説明を生成するために,CERec を新たに提案する。
我々は、与えられた知識グラフのリッチなコンテキスト情報を用いて、適応経路サンプリング器を用いて巨大な探索空間を縮小する。
論文 参考訳(メタデータ) (2022-07-14T05:59:58Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Measuring "Why" in Recommender Systems: a Comprehensive Survey on the
Evaluation of Explainable Recommendation [87.82664566721917]
この調査は、IJCAI、AAAI、TheWebConf、Recsys、UMAP、IUIといったトップレベルのカンファレンスから100以上の論文に基づいています。
論文 参考訳(メタデータ) (2022-02-14T02:58:55Z) - Counterfactual Explainable Recommendation [22.590877963169103]
本稿では、因果推論から反実的推論の洞察を取り入れて説明可能な推薦を行うCountERを提案する。
CountERは、モデル決定に対して単純(低複雑性)で効果的な(高強度)説明を求める。
以上の結果から,我々のモデルは,最先端のレコメンデーションモデルよりも正確かつ効果的に説明できることを示す。
論文 参考訳(メタデータ) (2021-08-24T06:37:57Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。