論文の概要: Macroeconomic Forecasting and Machine Learning
- arxiv url: http://arxiv.org/abs/2510.11008v1
- Date: Mon, 13 Oct 2025 04:56:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:30.204722
- Title: Macroeconomic Forecasting and Machine Learning
- Title(参考訳): マクロ経済予測と機械学習
- Authors: Ta-Chung Chi, Ting-Han Fan, Raffaele M. Ghigliazza, Domenico Giannone, Zixuan, Wang,
- Abstract要約: 我々は、マクロ経済リスクの全プロファイルをリアルタイムで正確に予測する。
縮退による規則化はモデル複雑性を制御するのに不可欠であるが、非線形性の導入は予測精度の限られた改善をもたらす。
- 参考スコア(独自算出の注目度): 28.48620781257894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We forecast the full conditional distribution of macroeconomic outcomes by systematically integrating three key principles: using high-dimensional data with appropriate regularization, adopting rigorous out-of-sample validation procedures, and incorporating nonlinearities. By exploiting the rich information embedded in a large set of macroeconomic and financial predictors, we produce accurate predictions of the entire profile of macroeconomic risk in real time. Our findings show that regularization via shrinkage is essential to control model complexity, while introducing nonlinearities yields limited improvements in predictive accuracy. Out-of-sample validation plays a critical role in selecting model architecture and preventing overfitting.
- Abstract(参考訳): 我々は,高次元データと適切な正則化,厳密なアウト・オブ・サンプルの検証手順の採用,非線形性の導入という3つの重要な原則を体系的に統合することにより,マクロ経済成果の完全な条件分布を予測した。
マクロ経済・金融予測器の集合に埋め込まれた豊富な情報を利用して、マクロ経済リスクの全プロファイルをリアルタイムで正確に予測する。
また, 非線形性の導入は, 予測精度を限定的に向上させる一方で, 縮退による正則化がモデル複雑性の制御に不可欠であることが示唆された。
サンプル外検証は、モデルアーキテクチャの選択と過剰適合の防止に重要な役割を果たします。
関連論文リスト
- Robust Molecular Property Prediction via Densifying Scarce Labeled Data [53.24886143129006]
薬物発見において、研究を進める上で最も重要な化合物は、しばしば訓練セットを越えている。
本稿では, ラベル付きデータを利用して, 分布内データ(ID)と分布外データ(OOD)を補間する2段階最適化手法を提案する。
論文 参考訳(メタデータ) (2025-06-13T15:27:40Z) - High-Dimensional Learning in Finance [0.0]
機械学習の最近の進歩は、財務予測に有望な結果を示している。
本稿では,これらの手法が予測的成功をいつ,どのように達成するかを理解するための理論的基礎と実証的検証を提供する。
論文 参考訳(メタデータ) (2025-06-04T09:41:55Z) - Enhancing Data Quality through Self-learning on Imbalanced Financial Risk Data [11.910955398918444]
本研究では、既存の金融リスクデータセットを強化するためのデータ前処理手法について検討する。
本稿では,(1)マイノリティクラスに特化された合成サンプルを生成すること,(2)バイナリフィードバックを用いてサンプルを精製すること,(3)擬似ラベルを用いた自己学習を行うこと,の3つを紹介する。
我々の実験は、より堅牢な金融リスク予測システムを開発する上で重要な要素であるマイノリティ・クラス・キャリブレーションの改善に焦点を当てたTriEnhanceの有効性を明らかにした。
論文 参考訳(メタデータ) (2024-09-15T16:59:15Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
本研究では, (e)NMPCの一部として最適性能を示すために, Koopman シュロゲートモデルの強化学習法を提案する。
エンドツーエンドトレーニングモデルは,(e)NMPCにおけるシステム識別を用いてトレーニングしたモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-03T10:21:53Z) - Dynamic Term Structure Models with Nonlinearities using Gaussian
Processes [0.0]
本稿では,ガウス型DTSMの一般化されたモデリング構成を提案する。
我々は,モデル非線形性に先立ってガウス過程を導入する,独自の連続モンテカルロ推定および予測スキームを構築した。
実際の経済活動とは異なり、コアインフレーションの場合、線形モデルと比較すると、非線形モデルの適用は、考慮された成熟度全体にわたる経済的価値の統計的に有意な上昇をもたらすことが分かる。
論文 参考訳(メタデータ) (2023-05-18T14:24:17Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Macroeconomic Predictions using Payments Data and Machine Learning [0.0]
本研究の目的は,非伝統的かつタイムリーなデータによって政策立案者がほぼリアルタイムで重要なマクロ経済指標を正確に推定する洗練されたモデルを提供できることを示すことである。
我々は、機械学習モデルにおける過度な適合と解釈可能性の課題を軽減し、ポリシー使用の有効性を改善するための、一連の計量的ツールを提供する。
支払いデータ、非線形手法、クロスバリデーション(クロスバリデーション)アプローチを備えた当社のモデルは、新型コロナウイルス(COVID-19)の期間中に上昇するマクロ経済の予測精度を最大40%向上させるのに役立ちます。
論文 参考訳(メタデータ) (2022-09-02T11:12:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - How is Machine Learning Useful for Macroeconomic Forecasting? [0.0]
標準的なマクロ計量法よりもMLゲインを駆動する基礎的特徴の有用性について検討する。
我々は, いわゆる4つの特徴(非線形性, 正規化, クロスバリデーション, 代替損失関数)を区別し, データリッチ環境とデータ貧弱環境の両方でそれらの挙動を研究する。
このことは機械学習が不確実性や金銭的摩擦の文脈で発生する重要な非線形性を主に捉え、マクロ経済予測に有用であることを示唆している。
論文 参考訳(メタデータ) (2020-08-28T04:23:52Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。