論文の概要: A Comprehensive Forecasting-Based Framework for Time Series Anomaly Detection: Benchmarking on the Numenta Anomaly Benchmark (NAB)
- arxiv url: http://arxiv.org/abs/2510.11141v1
- Date: Mon, 13 Oct 2025 08:31:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:30.268176
- Title: A Comprehensive Forecasting-Based Framework for Time Series Anomaly Detection: Benchmarking on the Numenta Anomaly Benchmark (NAB)
- Title(参考訳): 時系列異常検出のための包括的予測ベースフレームワーク: Numenta Anomaly Benchmark (NAB) のベンチマーク
- Authors: Mohammad Karami, Mostafa Jalali, Fatemeh Ghassemi,
- Abstract要約: 時系列異常検出は、現代のデジタルインフラにとって重要である。
本稿では,従来の手法をディープラーニングアーキテクチャと統合した予測ベースのフレームワークを提案する。
Numenta Anomaly Benchmark の最初の完全評価を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series anomaly detection is critical for modern digital infrastructures, yet existing methods lack systematic cross-domain evaluation. We present a comprehensive forecasting-based framework unifying classical methods (Holt-Winters, SARIMA) with deep learning architectures (LSTM, Informer) under a common residual-based detection interface. Our modular pipeline integrates preprocessing (normalization, STL decomposition), four forecasting models, four detection methods, and dual evaluation through forecasting metrics (MAE, RMSE, PCC) and detection metrics (Precision, Recall, F1, AUC). We conduct the first complete evaluation on the Numenta Anomaly Benchmark (58 datasets, 7 categories) with 232 model training runs and 464 detection evaluations achieving 100\% success rate. LSTM achieves best performance (F1: 0.688, ranking first or second on 81\% of datasets) with exceptional correlation on complex patterns (PCC: 0.999). Informer provides competitive accuracy (F1: 0.683) with 30\% faster training. Classical methods achieve perfect predictions on simple synthetic data with 60 lower cost but show 2-3 worse F1-scores on real-world datasets. Forecasting quality dominates detection performance: differences between detection methods (F1: 0.621-0.688) are smaller than between forecasting models (F1: 0.344-0.688). Our findings provide evidence-based guidance: use LSTM for complex patterns, Informer for efficiency-critical deployments, and classical methods for simple periodic data with resource constraints. The complete implementation and results establish baselines for future forecasting-based anomaly detection research.
- Abstract(参考訳): 時系列異常検出は現代のデジタルインフラにとって重要であるが、既存の手法は体系的なクロスドメイン評価を欠いている。
本稿では,従来の手法 (Holt-Winters, SARIMA) とディープラーニングアーキテクチャ (LSTM, Informer) を共通残差検出インタフェースで統合した総合予測ベースのフレームワークを提案する。
我々のモジュールパイプラインは、事前処理(正規化、STL分解)、4つの予測モデル、4つの検出方法、および予測指標(MAE、RMSE、PCC)と検出指標(Precision、Recall、F1、AUC)による二重評価を統合している。
我々は,Numenta Anomaly Benchmark(58データセット,7カテゴリ)において,232回のモデルトレーニングと464回の検出評価を行い,100\%の成功率を達成した。
LSTMは、複雑なパターン(PCC:0.999)に比較して、最高のパフォーマンス(F1: 0.688、データセットの81\%で1位または2位)を達成する。
Informerは競争精度(F1: 0.683)を30倍の速さで提供する。
古典的手法は60コストの単純な合成データに対して完璧な予測を行うが、実世界のデータセットでは2-3スコアのF1スコアを示す。
検出方法の違い(F1: 0.621-0.688)は予測モデルよりも小さい(F1: 0.344-0.688)。
本研究は,複雑なパターンにLSTM,効率クリティカルなデプロイメントにInformer,リソース制約のある単純な周期データに古典的手法を用いたエビデンスに基づくガイダンスを提供する。
完全な実装と結果は、将来の予測に基づく異常検出研究のベースラインを確立する。
関連論文リスト
- NAIPv2: Debiased Pairwise Learning for Efficient Paper Quality Estimation [58.30936615525824]
本稿では,紙の品質評価のための非バイアスで効率的なフレームワークであるNAIPv2を提案する。
NAIPv2は、レビューアレーティングの不整合を低減するために、ドメイン年グループ内でペアワイズ学習を採用している。
これはペアワイズ比較に基づいてトレーニングされるが、デプロイ時に効率的なポイントワイズ予測を可能にする。
論文 参考訳(メタデータ) (2025-09-29T17:59:23Z) - Revisiting Multivariate Time Series Forecasting with Missing Values [74.56971641937771]
現実の時系列では欠落値が一般的である。
現在のアプローチでは、計算モジュールを使用して、不足した値を補う、計算済みの予測フレームワークが開発されている。
このフレームワークは、致命的な問題を見落としている: 欠落した値に対して基礎的な真理は存在せず、予測精度を劣化させる可能性のあるエラーの影響を受けやすいようにしている。
本稿では,Information Bottleneck原則に基づく新しいフレームワークであるConsistency-Regularized Information Bottleneck(CRIB)を紹介する。
論文 参考訳(メタデータ) (2025-09-27T20:57:48Z) - A Realistic Evaluation of Cross-Frequency Transfer Learning and Foundation Forecasting Models [32.56983347493999]
大規模時系列データセットを事前トレーニング基礎予測モデル(FFM)にキュレートするための一般的なフレームワークとして、クロス周波数転送学習(CFTL)が登場している。
CFTLは将来性を示しているが、現在のベンチマークプラクティスは、そのパフォーマンスを正確に評価するに足らない。
この欠点は、小規模評価データセットへの過度な依存、計算サマリ統計におけるサンプルサイズの不適切な処理、最適以下の統計モデルの報告、事前トレーニングとテストデータセット間の重複の非無視的なリスクの考慮の欠如など、多くの要因に起因している。
論文 参考訳(メタデータ) (2025-09-23T18:19:50Z) - Graph-Based Fault Diagnosis for Rotating Machinery: Adaptive Segmentation and Structural Feature Integration [0.0]
本稿では,回転機械における頑健かつ解釈可能なマルチクラス故障診断のためのグラフベースフレームワークを提案する。
エントロピー最適化信号セグメンテーション、時間周波数特徴抽出、グラフ理論モデリングを統合し、振動信号を構造化表現に変換する。
提案手法は,2つのベンチマークデータセットで評価した場合,高い診断精度を実現する。
論文 参考訳(メタデータ) (2025-04-29T13:34:52Z) - Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data [39.40116554523575]
In-Context Learning with a Prior-Data Fitted Network に基づく新しいアプローチである Drift-Resilient TabPFN を提案する。
先行した合成データセットのベイズ推定を近似することを学ぶ。
精度は0.688から0.744に向上し、OC AUCは0.786から0.832に向上し、キャリブレーションも強化された。
論文 参考訳(メタデータ) (2024-11-15T23:49:23Z) - A Mixture of Exemplars Approach for Efficient Out-of-Distribution Detection with Foundation Models [0.0]
本稿では, 高品質で凍結, 事前訓練された基礎モデルを用いて, バックボーンをトレーニングする利点を最大化するためのOOD検出への効率的なアプローチを提案する。
MoLARは、OODサンプルの類似性と、データセットを表すために選択された小さなイメージの例を比較するだけで、強力なOOD検出性能を提供する。
論文 参考訳(メタデータ) (2023-11-28T06:12:28Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) は Consistency Models (CM) の一般化である
CTMは、対戦訓練とスコアマッチング損失を効果的に組み合わせることで、パフォーマンスを向上させる。
CMとは異なり、CTMのスコア関数へのアクセスは、確立された制御可能/条件生成メソッドの採用を合理化することができる。
論文 参考訳(メタデータ) (2023-10-01T05:07:17Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - RLAD: Time Series Anomaly Detection through Reinforcement Learning and
Active Learning [17.089402177923297]
新しい半監視型時系列異常検出アルゴリズムを紹介します。
深層強化学習とアクティブラーニングを使用して、実世界の時系列データの異常を効率的に学習し、適応する。
パラメータを手動でチューニングする必要はなく、比較するすべての最先端のメソッドを上回ります。
論文 参考訳(メタデータ) (2021-03-31T15:21:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。