論文の概要: DemoHLM: From One Demonstration to Generalizable Humanoid Loco-Manipulation
- arxiv url: http://arxiv.org/abs/2510.11258v1
- Date: Mon, 13 Oct 2025 10:49:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:30.326412
- Title: DemoHLM: From One Demonstration to Generalizable Humanoid Loco-Manipulation
- Title(参考訳): DemoHLM: ひとつのデモから一般化可能なヒューマノイドロコ操作へ
- Authors: Yuhui Fu, Feiyang Xie, Chaoyi Xu, Jing Xiong, Haoqi Yuan, Zongqing Lu,
- Abstract要約: シミュレーションにおける1つのデモから,実ロボット上でのヒューマノイドロコ操作のためのフレームワークであるDemoHLMを提案する。
全身のコントローラーは、全身のモーションコマンドを関節トルクにマッピングし、ヒューマノイドロボットのための全方向移動手段を提供する。
実験では, 合成データ量と政策性能との間に正の相関が認められた。
- 参考スコア(独自算出の注目度): 29.519071338337685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Loco-manipulation is a fundamental challenge for humanoid robots to achieve versatile interactions in human environments. Although recent studies have made significant progress in humanoid whole-body control, loco-manipulation remains underexplored and often relies on hard-coded task definitions or costly real-world data collection, which limits autonomy and generalization. We present DemoHLM, a framework for humanoid loco-manipulation that enables generalizable loco-manipulation on a real humanoid robot from a single demonstration in simulation. DemoHLM adopts a hierarchy that integrates a low-level universal whole-body controller with high-level manipulation policies for multiple tasks. The whole-body controller maps whole-body motion commands to joint torques and provides omnidirectional mobility for the humanoid robot. The manipulation policies, learned in simulation via our data generation and imitation learning pipeline, command the whole-body controller with closed-loop visual feedback to execute challenging loco-manipulation tasks. Experiments show a positive correlation between the amount of synthetic data and policy performance, underscoring the effectiveness of our data generation pipeline and the data efficiency of our approach. Real-world experiments on a Unitree G1 robot equipped with an RGB-D camera validate the sim-to-real transferability of DemoHLM, demonstrating robust performance under spatial variations across ten loco-manipulation tasks.
- Abstract(参考訳): ロコマニピュレーションは、ヒューマノイドロボットにとって、人間環境における多目的インタラクションを実現するための根本的な課題である。
近年の研究はヒューマノイド全体の制御に大きな進歩を遂げているが、ロコ操作は未熟であり、多くの場合、自律性と一般化を制限した、ハードコードされたタスク定義やコストのかかる実世界のデータ収集に依存している。
In this present DemoHLM, a framework for humanoid loco-manipulation which can generalizable loco-manipulation on a real humanoid robot from a single demonstration in Simulation。
DemoHLMは、複数のタスクに対する高レベルな操作ポリシーと低レベルなユニバーサルボディコントローラを統合する階層構造を採用している。
全身制御装置は、全身の動きコマンドを関節トルクにマッピングし、ヒューマノイドロボットの全方位移動性を提供する。
データ生成と模倣学習パイプラインを通じてシミュレーションで学んだ操作ポリシは、クローズループの視覚フィードバックで全身コントローラを命令し、困難なロコ操作タスクを実行する。
実験の結果, 合成データ量と政策性能との間には正の相関関係がみられ, データ生成パイプラインの有効性とアプローチのデータ効率が評価された。
RGB-Dカメラを搭載したUnitree G1ロボットの実世界実験は、DemoHLMのシミュレート・トゥ・リアルトランスファービリティを検証し、10個のロコ操作タスクの空間変動下でのロバストな性能を実証した。
関連論文リスト
- OmniRetarget: Interaction-Preserving Data Generation for Humanoid Whole-Body Loco-Manipulation and Scene Interaction [76.44108003274955]
ヒューマノイドロボットの複雑なスキルを教えるための主要なパラダイムは、強化学習ポリシーの運動学的参照として人間の動きを再ターゲットすることである。
インタラクションメッシュに基づくインタラクション保存データ生成エンジンであるOmniRetargetを紹介する。
人間のメッシュとロボットメッシュの間のラプラシアの変形を最小限にすることで、OmniRetargetは運動学的に実現可能な軌道を生成する。
論文 参考訳(メタデータ) (2025-09-30T17:59:02Z) - Dexplore: Scalable Neural Control for Dexterous Manipulation from Reference-Scoped Exploration [58.4036440289082]
ハンドオブジェクトモーションキャプチャ(MoCap)は、大規模でコンタクトに富んだデモと、器用なロボットスコープの約束を提供する。
Dexploreは、リポジトリとトラッキングを実行し、MoCapから直接ロボット制御ポリシーを学習する、統一された単一ループ最適化である。
論文 参考訳(メタデータ) (2025-09-11T17:59:07Z) - H-RDT: Human Manipulation Enhanced Bimanual Robotic Manipulation [27.585828712261232]
H-RDT(Human to Robotics Diffusion Transformer)は、人間の操作データを利用してロボット操作能力を向上する新しいアプローチである。
私たちの重要な洞察は、大規模なエゴセントリックな人間操作ビデオとペアの3Dハンドポーズアノテーションが、自然な操作戦略を捉えたリッチな行動優先を提供するということです。
本研究では,(1)大規模な人間操作データに対する事前トレーニング,(2)モジュール型アクションエンコーダとデコーダを用いたロボット固有のデータに対するクロスエボディメント微調整という2段階の訓練パラダイムを導入する。
論文 参考訳(メタデータ) (2025-07-31T13:06:59Z) - Sim-to-Real Reinforcement Learning for Vision-Based Dexterous Manipulation on Humanoids [56.892520712892804]
本稿では,ヒューマノイドロボットを訓練して3つの巧妙な操作を行う,実用的なシミュレート・トゥ・リアルなRLレシピを提案する。
未確認のオブジェクトやロバストで適応的な政策行動に対して高い成功率を示す。
論文 参考訳(メタデータ) (2025-02-27T18:59:52Z) - Learning Multi-Modal Whole-Body Control for Real-World Humanoid Robots [13.229028132036321]
Masked Humanoid Controller (MHC)は、立位、歩行、体の一部の動きの模倣をサポートする。
MHCは、立ち上がり、歩行、最適化された基準軌跡、再ターゲットされたビデオクリップ、人間のモーションキャプチャーデータにまたがる行動のライブラリから、部分的にマスクされた動きを模倣する。
実世界のDigi V3ヒューマノイドロボット上でのシミュレート・トゥ・リアルトランスファーを実演する。
論文 参考訳(メタデータ) (2024-07-30T09:10:24Z) - Learning a Universal Human Prior for Dexterous Manipulation from Human
Preference [35.54663426598218]
本稿では,ビデオ上での人間の嗜好を直接フィードバックすることで,人類の普遍性を学習するフレームワークを提案する。
多様な警察を反復的に生成し、軌道上の人間の嗜好を収集することにより、タスクに依存しない報酬モデルを訓練する。
提案手法は,ロボットの手の動作を,目に見えないタスクを含む多様なタスクで実証的に示す。
論文 参考訳(メタデータ) (2023-04-10T14:17:33Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
実世界におけるヒューマノイド移動に対する完全学習型アプローチを提案する。
コントローラーは様々な屋外の地形の上を歩けるし、外乱に対して頑丈で、状況に応じて適応できる。
論文 参考訳(メタデータ) (2023-03-06T18:59:09Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。