論文の概要: Automatic Music Sample Identification with Multi-Track Contrastive Learning
- arxiv url: http://arxiv.org/abs/2510.11507v1
- Date: Mon, 13 Oct 2025 15:17:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:30.424938
- Title: Automatic Music Sample Identification with Multi-Track Contrastive Learning
- Title(参考訳): マルチトラックコントラスト学習による音楽サンプルの自動識別
- Authors: Alain Riou, Joan Serrà, Yuki Mitsufuji,
- Abstract要約: 自動サンプル識別の課題に取り組む。
我々は、多トラックデータセットを活用して、正の人工ミックスを生成する自己教師型学習アプローチを採用する。
このような手法は,従来の最先端のベースラインを著しく上回ることを示す。
- 参考スコア(独自算出の注目度): 36.60619556916679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sampling, the technique of reusing pieces of existing audio tracks to create new music content, is a very common practice in modern music production. In this paper, we tackle the challenging task of automatic sample identification, that is, detecting such sampled content and retrieving the material from which it originates. To do so, we adopt a self-supervised learning approach that leverages a multi-track dataset to create positive pairs of artificial mixes, and design a novel contrastive learning objective. We show that such method significantly outperforms previous state-of-the-art baselines, that is robust to various genres, and that scales well when increasing the number of noise songs in the reference database. In addition, we extensively analyze the contribution of the different components of our training pipeline and highlight, in particular, the need for high-quality separated stems for this task.
- Abstract(参考訳): 既存のオーディオトラックを再利用して新しい音楽コンテンツを作成する技法であるサンプリングは、現代の音楽制作において非常に一般的なプラクティスである。
本稿では, サンプルの自動識別, すなわち, サンプル内容の検出, 生成する素材の検索という課題に対処する。
そこで我々は,多トラックデータセットを活用した自己教師付き学習アプローチを採用し,人工ミックスの正のペアを作成し,新しいコントラスト学習目標を設計する。
提案手法は,様々なジャンルに頑健で,参照データベースにおけるノイズ曲数の増加にともなう,従来の最先端のベースラインを著しく上回ることを示す。
さらに、トレーニングパイプラインの異なるコンポーネントのコントリビューションを幅広く分析し、特に、このタスクのために高品質な分離ステムの必要性を強調します。
関連論文リスト
- A Study on the Data Distribution Gap in Music Emotion Recognition [7.281487567929003]
音楽感情認識(英語: Music Emotion Recognition, MER)は、人間の知覚に深く結びついている課題である。
先行研究は、様々なジャンルを取り入れるよりも、特定の音楽スタイルに焦点を当てる傾向がある。
音声コンテンツから感情を認識するタスクには,次元的感情アノテーションを用いた5つのデータセットを探索する。
論文 参考訳(メタデータ) (2025-10-06T10:57:05Z) - Automatic Identification of Samples in Hip-Hop Music via Multi-Loss Training and an Artificial Dataset [0.29998889086656577]
人工データセットでトレーニングされた畳み込みニューラルネットワークは、商用ヒップホップ音楽の実際のサンプルを識別できることを示す。
共同分類とメートル法学習損失を用いてモデルを最適化し,実世界のサンプリングの精度を13%向上することを示す。
論文 参考訳(メタデータ) (2025-02-10T11:30:35Z) - Self-Supervised Contrastive Learning for Robust Audio-Sheet Music
Retrieval Systems [3.997809845676912]
自己指導型コントラスト学習は、実際の音楽コンテンツからの注釈付きデータの不足を軽減することができることを示す。
クロスモーダルなピース識別の高レベルなタスクにスニペットを埋め込む。
本研究では,実際の音楽データが存在する場合,検索品質が30%から100%に向上することが観察された。
論文 参考訳(メタデータ) (2023-09-21T14:54:48Z) - Investigating Personalization Methods in Text to Music Generation [21.71190700761388]
コンピュータビジョン領域の最近の進歩に触発されて、事前学習されたテキスト・オーディオ・ディフューザと2つの確立されたパーソナライズ手法の組み合わせを初めて検討した。
評価のために,プロンプトと音楽クリップを用いた新しいデータセットを構築した。
分析の結果、類似度指標はユーザの好みに応じており、現在のパーソナライズアプローチでは、メロディよりもリズム音楽の構成を学習しやすい傾向にあることがわかった。
論文 参考訳(メタデータ) (2023-09-20T08:36:34Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - Automatic music mixing with deep learning and out-of-domain data [10.670987762781834]
伝統的に、音楽のミキシングは、クリーンで個々のトラックの形で楽器を録音し、オーディオ効果と専門家の知識を使ってそれらを最後のミキシングに混ぜる。
本稿では,モデルが自動音楽ミキシングを行うことのできる新しいデータ前処理手法を提案する。
また,音楽ミキシングシステム評価のためのリスニングテスト手法を再設計した。
論文 参考訳(メタデータ) (2022-08-24T10:50:22Z) - SeCo: Separating Unknown Musical Visual Sounds with Consistency Guidance [88.0355290619761]
この作品は未知の楽器の分離に焦点を当てている。
本稿では,未知のカテゴリを分離できるセコ(SeCo)フレームワークを提案する。
本手法は,新たな楽曲カテゴリに適応する能力を示し,基本手法を顕著なマージンで上回る性能を示す。
論文 参考訳(メタデータ) (2022-03-25T09:42:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。